We analyzed 6,749 lines tagged by the gene trap vector pGA2707. This resulted in the isolation of 3,793 genomic sequences flanking the T-DNA. Among the insertions, 1,846 T-DNAs were integrated into genic regions, and 1,864 were located in intergenic regions. Frequencies were also higher at the beginning and end of the coding regions and upstream near the ATG start codon. The overall GC content at the insertion sites was close to that measured from the entire rice (Oryza sativa) genome. Functional classification of these 1,846 tagged genes showed a distribution similar to that observed for all the genes in the rice chromosomes. This indicates that T-DNA insertion is not biased toward a particular class of genes. There were 764, 327, and 346 T-DNA insertions in chromosomes 1, 4 and 10, respectively. Insertions were not evenly distributed; frequencies were higher at the ends of the chromosomes and lower near the centromere. At certain sites, the frequency was higher than in the surrounding regions. This sequence database will be valuable in identifying knockout mutants for elucidating gene function in rice. This resource is available to the scientific community at http://www.postech.ac.kr/life/pfg/risd.Insertional mutagenesis is one of the most useful methods for analyzing gene function. When foreign DNA is inserted into a gene, it not only creates a mutation but also tags the affected gene, facilitating its isolation and characterization (Azpiroz-Leehan and Feldmann, 1997). Transposons and T-DNA have been used most widely as an insertional mutagen (Mathur et al., 1998;Wisman et al., 1998; Krysan et al., 1999;Parinov et al., 1999;Speulman et al., 1999;Tissier et al., 1999). It is believed that T-DNA insertion is a random event and that the inserted sequences are stable through multiple generations (Azpiroz- Leehan and Feldmann, 1997;Parinov and Sundaresan, 2000). Insertional mutant pools have been constructed in Arabidopsis and used for functional analysis of a number of genes (Feldmann, 1991; Koncz et al., 1992; Azpiroz-Leehan and Feldmann, 1997; Bechtold and Pelletier, 1998; Krysan et al., 1999; Galbiati et al., 2000;Parinov and Sundaresan, 2000; Bouché and Bouchez, 2001;Sessions et al., 2002;Szabados et al., 2002). The procedure for T-DNA insertional mutagenesis has also been applied to rice (Oryza sativa) using the Agrobacterium tumefaciensmediated transformation method (Hiei et al., 1994). Jeon et al. (2000) have reported the construction of over 20,000 T-DNA-tagged rice lines. A T-DNA insertional mutagen can be modified to trap a gene by inserting a reporter gene, such as gus (-glucuronidase), next to the T-DNA border (Sundaresan et al., 1995; Jeon et al., 2000;Springer, 2000). Approximately 5% to 10% of the mutagenized lines are GUS positive, demonstrating the efficiency of this gene-trapping system (Chin et al., 1999; Jeon et al., 2000).Completion of the genome sequencing for both Arabidopsis and rice has provided new reverse genetic means for assigning biological functions to sequenced genes (Kumar...