Background and Purpose-The rate of nitric oxide (NO) generation from nitrite is linearly dependent on reductions in oxygen and pH levels. Recently, nitrite-derived NO has been reported to exert a profound protection against liver and heart ischemia-reperfusion injury. In this study, we hypothesized that nitrite would be reduced to NO in the ischemic brain and exert NO-dependent neuroprotective effects. Methods-Cerebral ischemia-reperfusion injury was induced by intraluminal thread occlusion of middle cerebral artery in the adult male rats. Solutions of sodium nitrite were infused intravenously at the time of reperfusion. Sodium nitrate and carboxy-PTIO (30 minutes before ischemic surgery), a direct NO scavenger, were infused for comparisons. Results-Nitrite reduced infarction volume and enhanced local cerebral blood flow and functional recovery. The effects were observed at concentrations of 48 nmol and 480 nmol, but not at 4800 nmol nitrite and 480 nmol nitrate. The neuroprotective effects of nitrite were inhibited completely by the carboxy-PTIO. The 480 nmol nitrite attenuated dihydroethidium activity, 3-nitrotyrosine formation, and lipid peroxidation in the ischemic brain. Conclusions-Nitrite exerted profound neuroprotective effects with antioxidant properties in the ischemic brains. These results suggest that nitrite, as a biological storage reserve of NO, may be a novel therapeutic agent in the setting of acute stroke.
Background and Purpose-Astrocytic glutamate transporter protein, GLT-1 (EAAT2), recovers extracellular glutamate and ensures that neurons are protected from excess stimulation. Recently, -lactam antibiotics, like ceftriaxone (CTX), were reported to induce the upregulation of GLT-1. Here, we investigated ischemic tolerance induction by CTX in an experimental model of focal cerebral ischemia. Methods-CTX (200 mg/kg per day, IP) was administered for 5 consecutive days before transient focal ischemia, which was induced by intraluminal thread occlusion of the middle cerebral artery for 90 minutes or permanently. Results-Repeated CTX injections enhanced GLT-1 mRNA and protein expressions after 3 and 5 days of treatment, respectively. CTX-pretreated animals showed a reduction in infarct volume by 58% (reperfusion) and 39% (permanent), compared with the vehicle-pretreated animals at 24 hours postischemia (PϽ0.01). Lower doses of CTX (20 mg/kg per day and 100 mg/kg per day) reduced infarct volumes to a lesser degree. The injection of GLT-1 inhibitor (dihydrokainate) at 30 minutes before ischemia ameliorated the effect of CTX pretreatment. However, CTX administration at 30 minutes after ischemia produced no significant reduction in infarct volume. CTX reduced the levels of proinflammatory cytokines (tumor necrosis factor-␣, FasL), matrix metalloproteinase (MMP)-9, and activated caspase-9 (PϽ0.01). In addition, CTX-pretreated animals showed better functional recovery at day 1 to week 5 after ischemia (PϽ0.05). Conclusions-This study presents evidence that CTX induces ischemic tolerance in focal cerebral ischemia and that this is mediated by GLT-1 upregulation. (Stroke. 2007;38:177-182.)
Background and Purpose-Understanding on distinct subsets of endothelial progenitor cells may provide insights of endothelial dysfunction or repair in the acute ischemic event. Recent in vitro data have reported the colony-forming unit (CFU) and outgrowth cell population as a subset of endothelial progenitor cells. In this study, we undertook to validate the significance of CFU number and outgrowth cell yield in acute stroke. Methods-Mononuclear cells were isolated from the peripheral blood of 75 patients with acute stroke, 45 patients with chronic stroke, and 40 age-matched healthy volunteers. CFU numbers were counted after culturing them for 7 days, and outgrowth cell appearance was measured during the 2 months of culture. Endothelial progenitor cell function was also evaluated by matrigel plate assays. Independent parameters predicting CFU number and outgrowth cell yield were assessed using logistic regression analysis. Results-The CFU numbers and tube formation abilities in matrigel assays were significantly reduced in patients with acute stroke compared with patients with chronic stroke or healthy control subjects. Moreover, patients with large artery atherosclerosis had much lower CFU numbers and functional activities than ones with cardioembolism. Outgrowth cells were isolated from 10% of healthy control subjects and 22% of patients with chronic stroke during the cultures, but from 71% of patients with stroke. Multivariate analysis identified glycosylated hemoglobin and National Institutes of Health Stroke Scale on admission as significant independent predictors of a low CFU number and a high isolation frequency of outgrowth cells, respectively. Conclusion-CFU number may thus represent an accumulated endothelial progenitor cell dysfunctional status, whereas outgrowth cell appearance may reflect the resilience of the systemic circulation to acute ischemic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.