IITP) grant funded by the Korea government (MSIT) (No.2022-0-00223, Development of digital therapeutics to improve communication ability of autism spectrum disorder patients).
This study focuses on the issue of automatic severity classification of dysarthric speakers based on speech intelligibility. Speech intelligibility is a complex measure that is affected by the features of multiple speech dimensions. However, most previous studies are restricted to using features from a single speech dimension. To effectively capture the characteristics of the speech disorder, we extracted features of multiple speech dimensions: voice quality, prosody, and pronunciation. Voice quality consists of jitter, shimmer, Harmonic to Noise Ratio (HNR), number of voice breaks, and degree of voice breaks. Prosody includes speech rate (total duration, speech duration, speaking rate, articulation rate), pitch (F0 mean/std/ min/max/med/25quartile/75 quartile), and rhythm (%V, deltas, Varcos, rPVIs, nPVIs). Pronunciation contains Percentage of Correct Phonemes (Percentage of Correct Consonants/Vowels/Total phonemes) and degree of vowel distortion (Vowel Space Area, Formant Centralized Ratio, Vowel Articulatory Index, F2-Ratio). Experiments were conducted using various feature combinations. The experimental results indicate that using features from all three speech dimensions gives the best result, with a 80.15 F1-score, compared to using features from just one or two speech dimensions. The result implies voice quality, prosody, and pronunciation features should all be considered in automatic severity classification of dysarthria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.