Recent evidence shows that amniotic fluid (AF) contains multiple cell types derived from the developing fetus, and may represent a novel source of stem cells for cell therapy. In this study, we examined the paracrine factors released by human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) and their ability to accelerate the wound-healing process by stimulating proliferation and migration of dermal fibroblasts. AF-MSCs expressed the typical MSC marker proteins CD13, CD29, and CD44 and differentiated into adipocytes, osteoblasts, and chondrocytes when exposed to the appropriate differentiation media. In addition, AF-MSC-conditioned media (AF-MSC-CM) significantly enhanced proliferation of dermal fibroblasts. Antibody-based protein array and enzyme-linked immunosorbent assay (ELISA) indicated that AF-MSC-CM contains various cytokines and chemokines that are known to be important in normal wound healing, including IL-8, IL-6, TGF-beta, TNFRI, VEGF, and EGF. Application of AF-MSC-CM significantly enhanced wound healing by dermal fibroblasts via the TGF-beta/SMAD2 pathway. Levels of p-SMAD2 were increased by AF-MSC-CM, and both the increase in p-SMAD2 and migration of dermal fibroblasts were blocked by inhibiting the TGF-beta/SMAD2 pathway. Moreover, in a mouse excisional wound model, AF-MSC-CM accelerated wound healing. These data provide the first evidence of the potential for AF-MSC-CM in the treatment of skin wounds.
In a previous study, we isolated human amniotic fluid (AF)-derived mesenchymal stem cells (AF-MSCs) and utilized normoxic conditioned medium (AF-MSC-norCM) which has been shown to accelerate cutaneous wound healing. Because hypoxia enhances the wound healing function of mesenchymal stem cell-conditioned medium (MSC-CM), it is interesting to explore the mechanism responsible for the enhancement of wound healing function. In this work, hypoxia not only increased the proliferation of AF-MSCs but also maintained their constitutive characteristics (surface marker expression and differentiation potentials). Notably, more paracrine factors, VEGF and TGF-β1, were secreted into hypoxic conditioned medium from AF-MSCs (AF-MSC-hypoCM) compared to AF-MSC-norCM. Moreover, AF-MSC-hypoCM enhanced the proliferation and migration of human dermal fibroblasts in vitro, and wound closure in a skin injury model, as compared to AF-MSC-norCM. However, the enhancement of migration of fibroblasts accelerated by AF-MSC-hypoCM was inhibited by SB505124 and LY294002, inhibitors of TGF-β/SMAD2 and PI3K/AKT, suggesting that AF-MSC-hypoCM-enhanced wound healing is mediated by the activation of TGF-β/SMAD2 and PI3K/AKT. Therefore, AF-MSC-hypoCM enhances wound healing through the increase of hypoxia-induced paracrine factors via activation of TGF-β/SMAD2 and PI3K/AKT pathways.
Keloids are benign skin tumors characterized by collagen accumulation and hyperproliferation of fibroblasts. To find an effective therapy for keloids, we explored the pharmacological potential of (-)-epigallocatechin-3-gallate (EGCG), a widely investigated tumor-preventive agent. When applied to normal and keloid fibroblasts (KFs) in vitro, proliferation and migration of KFs were more strongly suppressed by EGCG than normal fibroblast proliferation and migration (IC(50): 54.4 microM (keloid fibroblast (KF)) versus 63.0 microM (NF)). The level of Smad2/3, signal transducer and activator of transcription-3 (STAT3), and p38 phosphorylation is more enhanced in KFs, and EGCG inhibited phosphorylation of phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated protein kinase 1/2 (ERK1/2), and STAT3 (Tyr705 and Ser727). To evaluate the contribution of these pathways to keloid pathology, we treated KFs with specific inhibitors for PI3K, ERK1/2, or STAT3. Although a PI3K inhibitor significantly suppressed proliferation, PI3K and MEK/ERK inhibitors had a minor effect on migration and collagen production. However, a JAK2/STAT3 inhibitor and a STAT3 siRNA strongly suppressed proliferation, migration, and collagen production by KFs. We also found that treatment with EGCG suppressed growth and collagen production in the in vivo keloid model. This study demonstrates that EGCG suppresses the pathological characteristics of keloids through inhibition of the STAT3-signaling pathway. We propose that EGCG has potential in the treatment and prevention of keloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.