Background: Using mobile communication technology as new personalized approach to treat mental disorders or to more generally improve quality of life is highly promising. Knowledge about intervention components that target key psychopathological processes in terms of transdiagnostic psychotherapy approaches is urgently needed. We explored the use of smartphone-based micro-interventions based on psychotherapeutic techniques, guided by short video-clips, to elicit mood changes.Method: As part of a larger neurofeedback study, all subjects—after being randomly assigned to an experimental or control neurofeedback condition—underwent daily smartphone-based micro-interventions for 13 consecutive days. They were free to choose out of provided techniques, including viscerosensory attention, emotional imagery, facial expression, and contemplative repetition. Changes in mood were assessed in real world using the Multidimensional Mood State Questionnaire (scales: good–bad, GB; awake–tired, AT; and calm–nervous, CN).Results: Twenty-seven men participated on at least 11 days and were thus included in the analyses. Altogether, they underwent 335, generally well-tolerated, micro-intervention sessions, with viscerosensory attention (178 sessions, 53.13%) and contemplative repetition (68 sessions, 20.30%) being the most frequently applied techniques. Mixed models indicated that subjects showed better mood [GB: b = 0.464, 95%confidence interval (CI) [0.068, 0.860], t(613.3) = 2.298, p = 0.022] and became more awake [AT: b = 0.514, 95%CI [0.103, 0.925], t(612.4) = 2.456, p = 0.014] and calmer [CN: b = 0.685, 95%CI [0.360, 1.010], t(612.3) = 4.137, p < 0.001] from pre- to post-micro-intervention. These mood improvements from pre- to post-micro-intervention were associated with changes in mood from the 1st day until the last day with regard to GB mood (r = 0.614, 95%CI [0.297, 0.809], p < 0.001), but not AT mood (r = 0.279, 95%CI [−0.122, 0.602], p = 0.167) and CN mood (r = 0.277, 95%CI [0.124, 0.601], p = 0.170).Discussion: Our findings provide evidence for the applicability of smartphone-based micro-interventions eliciting short-term mood changes, based on techniques used in psychotherapeutic approaches, such as mindfulness-based psychotherapy, transcendental meditation, and other contemplative therapies. The results encourage exploring these techniques' capability to improve mood in randomized controlled studies and patients. Smartphone-based micro-interventions are promising to modify mood in real-world settings, complementing other psychotherapeutic interventions, in line with the precision medicine approach. The here presented data were collected within a randomized trial, registered at ClinicalTrials.gov (Identifier: NCT01921088) https://clinicaltrials.gov/ct2/show/NCT01921088.
Competition and collaboration are strategies that can be used to optimize the outcomes of social interactions. Research into the neuronal substrates underlying these aspects of social behavior has been limited due to the difficulty in distinguishing complex activation via univariate analysis. Therefore, we employed multivoxel pattern analysis of functional magnetic resonance imaging to reveal the neuronal activations underlying competitive and collaborative processes when the collaborator/opponent used myopic/predictive reasoning. Twenty‐four healthy subjects participated in 2 × 2 matrix‐based sequential‐move games. Searchlight‐based multivoxel patterns were used as input for a support vector machine using nested cross‐validation to distinguish game conditions, and identified voxels were validated via the regression of the behavioral data with bootstrapping. The left anterior insula (accuracy = 78.5%) was associated with competition, and middle frontal gyrus (75.1%) was associated with predictive reasoning. The inferior/superior parietal lobules (84.8%) and middle frontal gyrus (84.7%) were associated with competition, particularly in trials with a predictive opponent. The visual/motor areas were related to response time as a proxy for visual attention and task difficulty. Our results suggest that multivoxel patterns better represent the neuronal substrates underlying the social cognition of collaboration and competition intermixed with myopic and predictive reasoning than do univariate features.
In this paper, we propose a optical property correction technique for a low-cost heterogeneous stereoscopic camera. Three main optical properties of a stereoscopic camera are zoom, focus, and DOF(depth of field). The difference or mis-match of these properties between two stereoscopic videos are the main causes of the visual fatigue to human eyes. The proposed correction technique reduces the difference of the optical properties between the stereoscopic videos and produces high-quality stereoscopic videos. To correct the zoom difference, a LUT(look-up table) is established to match the zoom ratio between the stereoscopic videos. To correct the DOF difference, the magnitude of image edge is measured and the lens iris is changed to control the DOF of the camera. A vertical-type stereoscopic rig is developed for the experiments of the optical property correction. Based on the experimental results, we find that a low-cost heterogeneous stereoscopic camera can be implemented, which can yield low visual fatigue to human eyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.