Various surface treatments on zirconia have been reported for dental porcelain veneer. However, it has not been determined which of these treatments provide the highest bond strength. The purpose of this study is to compare the effect of airborne particle abrasion and atmospheric pressure
plasma treatment on the shear bond strength between zirconia and dental porcelain veneer. The groups were divided into four groups according to the surface treatment method: the control group, the atmospheric pressure plasma treated group (group P), the airborne particle abrasion group (group
A), the atmospheric pressure plasma treated group after the airborne particle abrasion (group AP). Atmospheric pressure plasma was applied on the specimens using a plasma generator (Plasma JET, POLYBIOTECH Co. Ltd., Gwangju, Korea) and airborne-particle abraded with 110 µm. The
characteristics of surface treated zirconia were analyzed by 3D-OP, XRD, XPS and contact angle. The shear bond strength was tested using a universal testing machine. The shear bond strength of group P was significantly increased compared to that of the control group (P < 0.05).
The shear bond strength of group AP was significantly increased as compared to group A (P < 0.05). There was no significant difference between the group P and group A (P > 0.05). As a result of this study, the atmospheric pressure plasma treatment showed significantly higher
shear bond strength than control group, but similar to the airborne particle abrasion, and the atmospheric pressure plasma treatment after the airborne particle abrasion provided the highest shear bond strength. This study demonstrated that application atmospheric pressure plasma treatment
on zirconia may be useful for increasing bond strength between zirconia and dental porcelain veneer.
The purpose of this study was to examine the surface characteristics of bioactive glass-infiltrated zirconia specimens that underwent different hydrofluoric acid (HF) etching conditions. Specimens were classified into the following six groups: Zirconia, Zirliner, Porcelain, Bioactive glass A1, Bioactive glass A2, and Bioactive glass A3. Zirliner and porcelain were applied to fully sintered zirconia followed by heat treatment. Bioactive glass was infiltrated into presintered zirconia using a spin coating method followed by complete sintering. All the specimens were acid-etched with 10% or 20% HF, and surface roughness was measured using a profiler. The surface roughness of the zirconia group was not affected by the etching time or the concentration of the acid. The roughness of the three bioactive glass groups (A1, A2, and A3) was slightly increased up until 10 minutes of etching. After 1 hour of etching, the roughness was considerably increased. The infiltrated bioactive glass and acid etching did not affect the adhesion and proliferation of osteoblasts. This study confirmed that surface roughness was affected by the infiltration material, etching time, and acid concentration. For implant surfaces, it is expected that the use of etched bioactive glass-infiltrated zirconia with micro-topographies will be similar to that of machined or sand-blasted/acid-etched (SLA) titanium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.