Statin has been known not only as their cholesterol-lowering action but also on their pleiotropic effects including anti-inflammatory and anti-oxidant as well as anti-cancer effect. Nrf2 (NF-E2-related factor 2) is a transcription factor to activate cellular antioxidant response to oxidative stress. There are little known whether statins affect activation of Nrf2 and Nrf2 signaling pathway in colon cancer cells. We investigated whether simvastatin stimulates the expression of Nrf2 and nuclear translocation of Nrf2 and which signal pathway is involved in the expression of Nrf2 and antioxidant enzymes. We investigated the effect of simvastatin on the expression of Nrf2 and nuclear translocation of Nrf2 in two human colon cancer cell lines, HT-29 and HCT 116 through cell proliferation assay, Western blotting and immunocytochemical analysis. We evaluated which signal pathway such as ERK or PI3K pathway affect Nrf2 activation and whether simvastatin induces antioxidant enzymes (heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1), γ-glutamate-cysteine ligase catalytic subunit (GCLC)). We demonstrated simvastatin-induced dose-dependent up-regulation of Nrf2 expression and stimulated Nrf2 nuclear translocation in colon cancer cells. We also demonstrated that simvastatin-induced anti-oxidant enzymes (HO-1, NQO1, and GCLC) in HT-29 and HCT 116 cells. PI3K/Akt inhibitor (LY294002) and ERK inhibitor (PD98059) suppressed simvastatin-induced Nrf2 and HO-1 expression in both HT-29 and HCT 116 cells. This study shows that simvastatin induces the activation and nuclear translocation of Nrf2 and the expression of various anti-oxidant enzymes via ERK and PI3K/Akt pathway in colon cancer cells.
Background/Aims : Metformin has been found to have antineoplastic activity in some cancer cells. This study was performed to determine whether metformin inhibits the proliferation of bile duct cancer cells by inducing apoptosis and its effects on the expression of gene-related proteins involved in cancer growth. Methods : Human extrahepatic bile duct cancer cells (SNU-245 and SNU-1196) were cultured. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were performed to determine the effect of metformin on the cell proliferation. Apoptosis was measured by a cell death detection enzyme-linked immunosorbent assay and a caspase-3 activity assay. Expression levels of various proteins, with or without specific small interfering ribonucleic acid-induced gene disruption, were measured by Western blot analysis. The migratory activity of the cancer cells was evaluated by wound healing assay. Results: Metformin suppressed cell proliferation in bile duct cancer cells by inducing apoptosis. Metformin inhibited mammalian target of rapamycin (mTOR) by activation of tuberous sclerosis complex 2 (TSC-2) through phosphorylation of adenosine monophosphate-activated protein kinase at threonine-172 (AMPK Thr172 ). Hyperglycemia impaired metformin-induced AMPK Thr172 activation and enhanced phosphorylation of AMPK at serine-485 (AMPK Ser485 ). Metformin blocked the inhibitory effect of insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor substrate 1 (IRS-1) pathway on TSC-2, and hyperglycemia impaired metformin-induced inhibition of IGF-1R/IRS-1 pathway and modulated the invasiveness of bile duct cancer cells; however, this effect was impaired by hyperglycemia. Conclusions : Metformin has antineoplastic effects in bile duct cancer, and hyperglycemic environment interrupts the effect of metformin. In addition, AMPK and IGF-1R play a key role in the proliferation of bile duct cancer cells.
Abstract. Insulin-like growth factor 1 (IGF-1) and IGF-1 receptor (IGF-1R) signaling plays an important role in tumor progression in patients with certain gastrointestinal tract cancers. In addition to lowering cholesterol in serum, statins have pleiotropic effects, including anti-oxidative, anti-inflammatory or anti-neoplastic effects. Therefore, the present study investigated whether statins could induce the apoptosis of colon cancer cells and regulate the expression of IGF-1R and its associated signaling pathways in the present study. It was demonstrated that simvastatin and pravastatin suppressed cell proliferation and induced cell death in human HT-29 cells, but simvastatin was more potent than pravastatin. Simvastatin induced apoptosis in a concentration-dependent manner. In addition, simvastatin suppressed the expression of IGF-1R and inhibited the activity of phosphorylated-extracellular signal-regulated kinase (ERK)1/2 and phosphorylated-Akt activated by IGF-1. Simvastatin and IGF-1 each stimulated the activity of phosphorylated ERK1/2. However, simvastatin inhibited cell proliferation and IGF-1 stimulated cell proliferation. Mevalonic acid and PD98059 reversed the ERK activation and apoptosis induced by treatment with simvastatin. It was concluded that simvastatin induces the apoptosis of human colon cancer cells and inhibits IGF-1-induced ERK and Akt expression via the downregulation of IGF-1R expression and proapoptotic ERK activation. Simvastatin may be beneficial for the treatment of colon cancer. The present study suggested that statin may possess therapeutic potential for the treatment of colon cancer.
Background/AimsStatins act as antineoplastic agents through the inhibition of cell proliferation. This study sought to demonstrate the effects of statins on extrahepatic bile duct cancer cell apoptosis and to document the changes in protein expression involved in tumor growth and suppression.MethodsHuman extrahepatic bile duct cancer cells were cultured. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to determine the effect of statins on cell proliferation. Apoptosis was measured by a cell death detection enzyme-linked immunosorbent assay and caspase-3 activity assay, and flow cytometry was used to determine the percentage of cells in each phase of the cell cycle. The protein expression of Bax, Bcl-2, insulin-like growth factor 1 (IGF-1) receptor, extracellular signal-regulated kinase 1/2 (ERK1/2), and Akt was measured by Western blot analysis.ResultsSimvastatin suppressed cell proliferation by inducing G1 phase cell cycle arrest in bile duct cancer cells. Furthermore, it induced apoptosis via caspase-3 activation, downregulated the expression of the Bcl-2 protein, and enhanced the expression of the Bax protein. Moreover, simvastatin suppressed the expression of the IGF-1 receptor and IGF-1-induced ERK/Akt activation.ConclusionsSimvastatin induces apoptosis in bile duct cancer cells, which suggests that it could be an antineoplastic agent for bile duct cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.