Obesity increases the risks of diabetes, hypertension, and cardiovascular diseases, ultimately contributing to mortality. Korean Society for the Study of Obesity (KSSO) was established to improve the management of obesity through research and education; to that end, the Committee of Clinical Practice Guidelines of KSSO reviews systemic evidence using expert panels to develop clinical guidelines. The clinical practice guidelines for obesity were revised in 2018 using National Health Insurance Service Health checkup data from 2006 to 2015. Following these guidelines, we added a category, class III obesity, which includes individuals with body mass index (BMI) ≥35 kg/m
2
. Agreeing with the International Federation for the Surgery of Obesity and Metabolic Disorders, Asian Pacific Chapter consensus, we determined that bariatric surgery is indicated for Korean patients with BMI ≥35 kg/m
2
and for Korean patients with BMI ≥30 kg/m
2
who have comorbidities. The new guidelines focus on guiding clinicians and patients to manage obesity more effectively. Our recommendations and treatment algorithms can serve as a guide for the evaluation, prevention, and management of overweight and obesity.
The dramatic increase in the prevalence of obesity and its accompanying comorbidities are major health concerns in Korea. Obesity is defined as a body mass index ≥25 kg/m2 in Korea. Current estimates are that 32.8% of adults are obese: 36.1% of men and 29.7% of women. The prevalence of being overweight and obese in national surveys is increasing steadily. Early detection and the proper management of obesity are urgently needed. Weight loss of 5% to 10% is the standard goal. In obese patients, control of cardiovascular risk factors deserves the same emphasis as weight-loss therapy. Since obesity is multifactorial, proper care of obesity requires a coordinated multidisciplinary treatment team, as a single intervention is unlikely to modify the incidence or natural history of obesity.
Materials that are simultaneously ferromagnetic and ferroelectric – multiferroics – promise the control of disparate ferroic orders, leading to technological advances in microwave magnetoelectric applications and next generation of spintronics. Single-phase multiferroics are challenged by the opposite
d
-orbital occupations imposed by the two ferroics, and heterogeneous nanocomposite multiferroics demand ingredients’ structural compatibility with the resultant multiferroicity exclusively at inter-materials boundaries. Here we propose the two-dimensional heterostructure multiferroics by stacking up atomic layers of ferromagnetic Cr
2
Ge
2
Te
6
and ferroelectric In
2
Se
3
, thereby leading to all-atomic multiferroicity. Through first-principles density functional theory calculations, we find as In
2
Se
3
reverses its polarization, the magnetism of Cr
2
Ge
2
Te
6
is switched, and correspondingly In
2
Se
3
becomes a switchable magnetic semiconductor due to proximity effect. This unprecedented multiferroic duality (i.e., switchable ferromagnet and switchable magnetic semiconductor) enables both layers for logic applications. Van der Waals heterostructure multiferroics open the door for exploring the low-dimensional magnetoelectric physics and spintronic applications based on artificial superlattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.