The epidemiological correlation between human CMV (HCMV) infection and spontaneous fetal loss has been suggested, but the underlying mechanism is not well understood. Fetal cytotrophoblasts, which are in direct contact with the maternal immune system in the uterus during pregnancy, do not express HLA-A and HLA-B, but express the nonclassical class I HLA-G and HLA-C. It has been shown that both HLA-G and HLA-C are capable of inhibiting NK-mediated cell lysis. In our present study, using human trophoblast cell lines as well as other cell lines stably transfected with the human class I genes, we have demonstrated that HCMV US3 and US6 down-regulate the cell-surface expression of both HLA-G and HLA-C by two different mechanisms. HCMV US3 physically associates with both trophoblast class I MHC species, retaining them in the endoplasmic reticulum. In contrast, HCMV US6 inhibits peptide transport by TAP and thus specifically the intracellular trafficking of class I molecules. Therefore, these findings suggest for the first time a possible molecular mechanism underlying HCMV-related spontaneous pregnancy loss.
IntroductionAlthough mesenchymal stem cells (MSCs) have antitumor potential in hepatocellular carcinoma and breast cancer cells, the antitumor mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in prostate cancer cells still remains unclear. Thus, in the present study, we elucidated the antitumor activity of hUCMSCs in PC-3 prostate cancer cells in vitro and in vivo.MethodshUCMSCs were isolated from Wharton jelly of umbilical cord and characterized via induction of differentiations, osteogenesis, and adipogenesis. Antitumor effects of UCMSCs on tumor growth were evaluated in a co-culture condition with PC-3 prostate cancer cells. PC-3 cells were subcutaneously (sc) injected into the left flank of nude mice, and UCMSCs were sc injected into the right flank of the same mouse.ResultsWe found that hUCMSCs inhibited the proliferation of PC-3 cells in the co-culture condition. Furthermore, co-culture of hUCMSCs induced the cleavage of caspase 9/3 and PARP, activated c-jun NH2-terminal kinase (JNK), and Bax, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/ AKT, extracellular signal-regulated kinase (ERK), and the expression of survival genes such as Bcl-2, Bcl-xL, Survivin, Mcl-1, and cIAP-1 in PC-3 cells in Western blotting assay. Conversely, we found that treatment of specific JNK inhibitor SP600125 suppressed the cleavages of caspase 9/3 and PARP induced by hUCMSCs in PC-3 cells by Western blotting and immunofluorescence assay. The homing of hUCMSCs to, and TUNEL-positive cells on, the K562 xenograft tumor region were detected in Nu/nu-BALB/c mouse.ConclusionsThese results suggest that UCMSCs inhibit tumor growth and have the antitumor potential for PC-3 prostate cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.