SummaryVarying coefficient regression models are known to be very useful tools for analysing the relation between a response and a group of covariates. Their structure and interpretability are similar to those for the traditional linear regression model, but they are more flexible because of the infinite dimensionality of the corresponding parameter spaces. The aims of this paper are to give an overview on the existing methodological and theoretical developments for varying coefficient models and to discuss their extensions with some new developments. The new developments enable us to use different amount of smoothing for estimating different component functions in the models. They are for a flexible form of varying coefficient models that requires smoothing across different covariates' spaces and are based on the smooth backfitting technique that is admitted as a powerful technique for fitting structural regression models and is also known to free us from the curse of dimensionality.
The clinical benefit, along with a conspicuous absence of significant adverse events, suggests that further testing of LAA depletion alternating with pharmacologic dose intravenous supplementation in patients with these and other malignancies is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.