The Triglyceride Glucose Index (TyG index) is considered a surrogate marker of insulin resistance. The aim of this study is to investigate whether the TyG index has a predictive role in identifying individuals with a high risk of incident diabetes and to compare it with other indicators of metabolic health. A total 2900 non-diabetic adults who attended five consecutive annual health check-ups at Kangbuk Samsung Hospital was divided into four subgroups using three methods: (1) baseline TyG index; (2) obesity status (body mass index ≥25 kg/m2) and cutoff value of TyG index; (3) obesity status and metabolic health, defined as having fewer than two of the five components of high blood pressure, fasting blood glucose, triglyceride, low high-density lipoprotein cholesterol, and highest decile of homeostasis model assessment-insulin resistance. The development of diabetes was assessed annually using self-questionnaire, fasting glucose, and glycated hemoglobin. We compared the risk of incident diabetes using multivariate Cox analysis. During 11623 person-years there were 101 case of incident diabetes. Subjects with high TyG index had a high risk of diabetes. For TyG index quartiles, hazard ratios (HRs) of quartiles 3 and 4 were 4.06 (p = 0.033) and 5.65 (p = 0.006) respectively. When the subjects were divided by obesity status and cutoff value of TyG index of 8.8, the subgroups with TyG index ≥ 8.8 regardless of obesity had a significantly high risk for diabetes (HR 2.40 [p = 0.024] and 2.25 [p = 0.048]). For obesity status and metabolic health, the two metabolically unhealthy subgroups regardless of obesity had a significantly high risk for diabetes (HRs 2.54 [p = 0.024] and 2.73 [p = 0.021]). In conclusion, the TyG index measured at a single time point may be an indicator of the risk for incident diabetes. The predictive value of the TyG index was comparable to that of metabolic health.
BackgroundWe aimed to assess the risk for coronary artery calcification (CAC) according to groups subdivided by body mass index (BMI) and waist circumference (WC) in apparently healthy Korean adults.MethodsThirty-three thousand four hundred and thirty-two participants (mean age, 42 years) in a health screening program were divided into three groups according to BMI: <23 kg/m2 (normal), 23 to 25 kg/m2 (overweight), and >25 kg/m2 (obese). In addition, the participants were divided into two groups according to WC. Coronary artery calcium score (CACS) was measured with multi-detector computed tomography in all participants. Presence of CAC was defined as CACS >0.ResultsWhen logistic regression analysis was performed with the presence of CAC as the dependent variable, the risk for CAC increased as BMI increased after adjusting for confounding variables (1.102 [95% confidence interval (CI), 1.000 to 1.216]; 1.284 [95% CI, 1.169 to 1.410]; in the overweight and obese groups vs. the normal weight group). When the participants were divided into six groups according to BMI and WC, the subjects with BMI and WC in the obese range showed the highest risk for CAC (1.321 [95% CI, 1.194 to 1.461]) and those with BMI in the overweight range and WC in the obese range showed the second highest risk for CAC (1.235 [95% CI, 1.194 to 1.461]).ConclusionParticipants with obesity defined by both BMI and WC showed the highest risk for CAC. Those with BMIs in the overweight range but with WC in the obese range showed the second highest risk for CAC, suggesting that WC as a marker of obesity is more predictive of CAC than BMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.