Li 4 Ti 5 O 12 was successfully synthesized by solvothermal techniques using cost-effective precursors in polyol medium. The x-ray diffraction ͑XRD͒ pattern of the sample ͑LTO-500͒ was clearly indexed to the spinel shaped Li 4 Ti 5 O 12 and in order to accurately determine the lattice parameters, synchrotron powder XRD pattern was fitted by the whole-pattern profile matching method using the model space group, Fd3m. The particle size, morphology, and crystallinity of LTO-500 were identified using field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical performance of the sample revealed fairly high initial discharge/charge specific capacities of 230 and 179 mAh/g, respectively, and exhibited highly improved rate performances at C-rates as high as 30 and 60 C, when compared to Li 4 Ti 5 O 12 by the solid-state reaction method. This was attributed to the achievement of small particle sizes in nanoscale dimensions, a reasonably narrow particle size distribution and, hence, shorter diffusion paths combined with larger contact area at the electrode/electrolyte interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.