The abbreviations used are: Prx, Peroxiredoxin; MMI, methimazole; TUNEL, terminal deoxynucleotidyl transferase deoxyuridine triphosphate-biotin nick end-labeling; TSH, thyrotropin; PCR, polymerase chain reaction.
TSH is an important physiological regulator of growth and function in thyroid gland. The mechanism of action of TSH depends on interaction with its receptor coupled to heterotrimeric G proteins. We show here that TSH induces the phosphorylation of tyrosine in the intracellular kinases Janus kinase 1 (JAK1) and -2 (JAK2) in rat thyroid cells and in Chinese hamster ovary (CHO) cells transfected with human TSH receptor (TSHR). The JAK family substrates STAT3 (signal transducers and activators of transcription) are rapidly tyrosine phosphorylated in response to TSH. We also find that JAK1, JAK2, and STAT3 coprecipitate with the TSHR, indicating that the TSHR may be able to signal through the intracellular phosphorylation pathway used by the JAK-STAT cascade. TSH increases STAT3-mediated promoter activity and also induces endogenous SOCS-1 (suppressor of cytokine signaling-1) gene expression, a known target gene of STAT3. The expression of a dominant negative form of STAT3 completely inhibited TSH-mediated SOCS-1 expression. These findings suggest that the TSHR is able to signal through JAK/STAT3 pathways.
TSH has multiple physiological roles: it is required for growth, differentiation, and function of the thyroid gland, and it regulates transcription of interferon-gamma (IFN-gamma)-responsive genes in thyrocytes, including genes for the major histocompatibility complex and intercellular adhesion molecule-1. This report demonstrates that TSH induces the expression of suppressor of cytokine signaling (SOCS)-1 and -3 proteins and alters the phosphorylation state of signal transducer and activator of transcription (STAT) proteins STAT1 and STAT3. The expression of SOCS-1 and SOCS-3 and the phosphorylation state of STAT1 and STAT3 were examined after treatment with TSH or IFN-gamma in either TSH-sensitive FRTL-5 thyroid cells or TSH-insensitive FRT and buffalo rat liver (BRL) cells, which lack functional TSH receptors. SOCS-1 and SOCS-3 are constitutively expressed in FRTL-5 cells, but not in FRT and BRL cells. IFN-gamma up-regulated SOCS-1 and SOCS-3 RNA and protein in FRTL-5 cells, as reported previously for nonthyroid cells. Interestingly, TSH also significantly induced SOCS-1 and SOCS-3 in FRTL-5 cells, but not in FRT and BRL cells. When SOCS-1 or SOCS-3 was overexpressed in FRTL-5 cells, STAT1 phosphorylation at Y701 and STAT1/DNA complex formation in response to IFN-gamma were reduced. Furthermore, overexpression of either SOCS-1 or SOCS-3 significantly inhibited the IFN-gamma-mediated transactivation of the rat ICAM-1 (intercellular adhesion molecule-1) promoter. TSH and IFN-gamma had different effects on STAT1 and STAT3 phosphorylation. The phosphorylation of Y701 in STAT1, which is responsible for homodimer formation, nuclear translocation, and DNA binding, was specifically stimulated by IFN-gamma, but not by TSH or forskolin. However, the phosphorylation of S727 in STAT1 was induced by IFN-gamma, TSH, and forskolin. TSH induced phosphorylation of both Y705 and S727 in STAT3, while IFN-gamma phosphorylated only the Y705. In addition, we found that SOCS-3 was associated with JAK1 and JAK2 and that these associations were stimulated by TSH. These findings demonstrate that TSH induces SOCS in thyroid cells and provides the evidence of signal cross-talk between TSH and cytokines in thyroid cells.
Intercellular adhesion molecule-1 (ICAM-1) has been suggested to play an important role in the perpetuation of autoimmune thyroid disease. To clarify the regulation of ICAM-1 gene in thyroid cells, we investigated ICAM-1 expression in the FRTL-5 thyroid cell model and defined several elements in the 5'-regulatory region that are important for transcriptional regulation of the rat ICAM-1 gene. Cells maintained in medium with 5% serum but without hydrocortisone, insulin, and thyrotropin (TSH) express the highest levels of ICAM-1 RNA. TSH/forskolin downregulate ICAM-1 RNA levels independent of the presence or absence of hydrocortisone or insulin. Moreover, TSH/forskolin decrease ICAM-1 RNA levels that are maximally induced by two cytokines: 100 ng/mL tumor necrosis factor-alpha (TNF-alpha) or 100 U/ml interferon-gamma (IFN-gamma). The effect of TSH/forskolin, as well as TNF-alpha and IFN-gamma, on ICAM-1 RNA levels is transcriptional. Thus, we cloned a 1.8-kb fragment of the 5'-flanking region of the rat ICAM-1 gene, upstream of the translational start site, and showed that TNF-alpha or IFN-gamma caused a 3.5- and greater than 12-fold increase respectively, in its promoter activity, when linked to a luciferase reporter gene and stably transfected into FRTL-5 cells. TSH or forskolin, in contrast, halved the activity of the full length chimera within 24 hours and significantly suppressed the TNF-alpha and IFN-gamma-induced increase (>50%; p < 0.02). Using 5'-deletion mutants, we located the element important for the TNF-alpha effect between -431 and -175 bp; we additionally show that deletion of a NF-kappaB core element within this region, TTGGAAATTC (-240 to -230 bp), causes the loss of TNF-alpha inducibility. The effect of IFN-gamma could be localized between -175 bp and -97 bp from the start of translation. This region contains 2 regulatory elements known to be involved in IFN-gamma action in other eukaryotic cells, an IFN-gamma activated site (GAS), -138 to -128 bp, and Spl site, -112 to -108 bp. Deletion of the 10 bp GAS sequence resulted in the complete loss of IFN-gamma induction of pCAM-175 promoter activity. TSH and forskolin action was also mapped between -175 bp and -97 bp from the start of translation. The mutant construct, pCAM-175delGAS mutl, which has no GAS sequence, exhibited no TSH-mediated suppression of promoter activity. We thus show that TSH/cAMP can downregulate ICAM-1 gene expression and inhibit the activity of cytokines (TNF-alpha and IFN-gamma) to increase ICAM-1 gene expression in FRTL-5 thyroid cells. We also localized elements on the 5'-flanking region of ICAM-1 important for these actions. We propose that this TSH/cyclic adenosine monophosphate (cAMP) action is a component of the mechanism to preserve self-tolerance of the thyroid during hormone-induced growth and function of the gland, and it may attenuate cytokine action during inflammatory reactions.
TSH is known as an important hormone that plays the major role not only in the maintenance of normal physiology but also in the regulation of immunomodulatory gene expression in thyrocytes. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1) was identified as one of the proteins that are abnormally expressed in the thyroid gland during autoimmune thyroid diseases. In this study we found that TSH inhibits interferon-gamma (IFNgamma)-mediated expression of the ICAM-1 gene, and we investigated the involved mechanisms in rat FRTL-5 thyroid cells. After exposure to IFNgamma, ICAM-1 expression is positively regulated at the level of transcription. This effect occurs via the IFNgamma-activated site (GAS) element in the ICAM-1 promoter as a consequence of the activation of STAT1 (signal transducer and activator of transcription-1), but not of STAT3. On the other hand, after exposure to TSH plus IFNgamma, ICAM-1 transcription is negatively modulated. We found that this inhibitory effect of TSH also occurs via the GAS element. Electrophoretic mobility shift assays confirmed that the IFNgamma-induced DNA-binding activities of STAT1 were reduced by TSH. Furthermore, our results showed that the inhibitory effect of TSH on IFNgamma signaling is caused by inhibition of tyrosine phosphorylation on STAT1, Janus kinase-1 (Jak1), and IFNgamma receptor a, but not Jak2. In conclusion, we have identified a novel mechanism in which TSH modulates the IFNgamma-mediated Jak/STAT signaling pathway through the inhibition of Jak1 and STAT1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.