A new hybrid compound, 4-(3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)thieno[3,2-d]pyrimidine 3, with promising biological activity was efficiently synthesized by the reaction of 3-phenyl-1-(thieno[3,2-d]pyrimidin-4-yl)-1H-pyrazol-5-amine with Vilsmeier–Haack reagent and subsequent treatment with ammonium carbonate. The structure of the synthesized compound was fully characterized by 1H-, 13C-NMR, IR spectroscopy, mass-spectrometry and elemental analysis.
An amorphous aluminium oxide layer is assumed to be a condensed gas phase composed of (AlO x ) N molecules. The total energy and the electron affinity of (AlO x ) N molecules is calculated by using a DFT program. The effective tunnel barrier height in the MTJ is presumed from a difference between the work function of the ferromagnetic metal and the electron affinity of (AlO x ) N molecules. By using a quantummechanical free electron model the TMR and the R×A product are calculated as a function of the thickness of an amorphous aluminium oxide layer in the F/I/F tunnel junction. It is inferred that the tunnel barrier width determined by subtracting 6 Å from the thickness of an amorphous aluminium oxide layer is more suitable to explain an experimental report qualitatively than the tunnel barrier width equivalent to the thickness of an amorphous aluminium oxide layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.