Unsupervised clustering models have been widely used for multimetric phenotyping of complex and heterogeneous diseases such as diabetes and obstructive sleep apnea (OSA) to more precisely characterize the disease beyond simplistic conventional diagnosis standards. However, the number of clusters and key phenotypic features have been subjectively selected, reducing the reliability of the phenotyping results. Here, to minimize such subjective decisions for highly confident phenotyping, we develop a multimetric phenotyping framework by combining supervised and unsupervised machine learning. This clusters 2277 OSA patients to six phenotypes based on their multidimensional polysomnography (PSG) data. Importantly, these new phenotypes show statistically different comorbidity development for OSA-related cardio-neuro-metabolic diseases, unlike the conventional single-metric apnea–hypopnea index-based phenotypes. Furthermore, the key features of highly comorbid phenotypes were identified through supervised learning rather than subjective choice. These results can also be used to automatically phenotype new patients and predict their comorbidity risks solely based on their PSG data. The phenotyping framework based on the combination of unsupervised and supervised machine learning methods can also be applied to other complex, heterogeneous diseases for phenotyping patients and identifying important features for high-risk phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.