Biotransformation is the major clearance mechanism of therapeutic agents from the body. Biotransformation is known not only to facilitate the elimination of drugs by changing the molecular structure to more hydrophilic, but also lead to pharmacological inactivation of therapeutic compounds. However, in some cases, the biotransformation of drugs can lead to the generation of pharmacologically active metabolites, responsible for the pharmacological actions. This review provides an update of the kinds of pharmacologically active metabolites and some of their individual pharmacological and pharmacokinetic aspects, and describes their importance as resources for drug discovery and development.
The antibacterial activities of vulgarone B, a component of Artemisia iwayomogi essential oil, were evaluated against some antibiotic-susceptible and -resistant human pathogens. Moreover, the effects of combining antibiotics, such as oxacillin, with vulgarone B were determined in this study. Significant inhibitory activities of Artemisia oils against antibiotic-susceptible and -resistant bacteria were confirmed by broth microdilution methods. The effects of vulgarone B on bacterial morphology and DNA were observed by scanning electron microscope and electrophoresis, respectively. In checkerboard microtiter tests, vulgarone B and A. iwayomogi oil combined with oxacillin resulted in synergism, or additive effects. Moreover, the safety of Artemisia oil and vulgarone B were confirmed in vivo. Both vulgarone B and the essential oil fraction of A. iwayomogi showed significant inhibitory activities against strains of antibioticsusceptible and -resistant bacteria. The oils showed synergism or additive effects when combined with oxacillin against two strains of Staphylococcus aureus. The antibiotic mechanism involved might be related to DNA cleavage. Thus, vulgarone B and the essential oil fraction of A. iwayomogi may be promising candidates for a safe, effective, natural agent active against antibiotic-resistant S. aureus, especially when combined with oxacillin.
The aims of this study were to design and characterise doxorubicin-loaded chitosan microspheres for anti-cancer chemoembolisation. Doxorubicin-loaded chitosan microspheres were prepared by emulsification and cross-linking methods. Doxorubicin-chitosan solution was initially complexed with tripolyphosphate (TPP) to improve drug loading capabilities. Doxorubicin-loaded chitosan microspheres were highly spherical and had approximately diameters of 130-160 µm in size. Drug loading amount and loading efficiency were in the range 3.7-4.0% and 68.5-85.8%, respectively, and affected by TPP concentration, drug levels and cross-linking time. Doxorubicin release was affected by TPP complexation, cross-linking time and release medium. Especially, lysozyme in release media considerably increased drug release. Synergistic anti-cancer activities of doxorubicin-releasing chitosan microspheres were confirmed to VX2 cells in the rabbit auricle model compared with blank microspheres. Doxorubicin-loaded chitosan microspheres can efficiently be prepared by TPP gelation and cross-linking method and developed as multifunctional anti-cancer embolic material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.