Clp-family proteins are prototypes for studying the mechanism of ATP-dependent proteases because the proteolytic activity of the ClpP core is tightly regulated by activating Clp-ATPases. Nonetheless, the proteolytic activation mechanism has remained elusive because of the lack of a complex structure. Acyldepsipeptides (ADEPs), a recently discovered class of antibiotics, activate and disregulate ClpP. Here we have elucidated the structural changes underlying the ClpP activation process by ADEPs. We present the structures of Bacillus subtilis ClpP alone and in complex with ADEP1 and ADEP2. The structures show the closed-to-open-gate transition of the ClpP N-terminal segments upon activation as well as conformational changes restricted to the upper portion of ClpP. The direction of the conformational movement and the hydrophobic clustering that stabilizes the closed structure are markedly different from those of other ATP-dependent proteases, providing unprecedented insights into the activation of ClpP.
The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.
We examined the effect of prolyl-hydroxyproline (Pro-Hyp), which occurs in human peripheral blood after ingestion of collagen peptide, on the migration and growth of mouse skin fibroblasts. Mouse skin discs were cultured on a 24-well plastic plate in a fetal bovine serum (FBS)-free medium. Addition of Pro-Hyp (200 nmol/mL) significantly increased the number of fibroblasts migrating from the skin to the plate after incubation for 72 h. This effect of Pro-Hyp was abolished by the addition of mitomycin C. The fibroblasts that had migrated from the mouse skin were collected and cultured on collagen gel. The growth of fibroblasts on the collagen gel was suppressed even in the presence of FBS, while rapid fibroblast growth was observed on the plastic plate. Addition of Pro-Hyp (0-1000 nmol/mL) to the medium containing 10% FBS enhanced the growth of fibroblasts on the collagen gel in a dose-dependent manner. These results suggest that Pro-Hyp might stimulate the growth of fibroblasts in the skin and consequently increase the number of fibroblasts migrating from the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.