A porous metal-organic framework (MOF), MIL-101, was synthesized in the presence of sulfated zirconia (SZ) to produce acidic SZ/MIL-101 composites for the first time. The composites were characterized with XRD, nitrogen adsorption, FT-IR, scanning electron microscope, chemical analysis and so on. The composites (SZ/ MIL-101s) were successfully applied in a liquid-phase esterification for a high yield of ester. This catalytic result of SZ/MIL-101, compared with that of pure SZ or MIL-101 (showing a negligible yield of ester), suggests that the SZ in the composite is highly active in the acid catalysis probably because of the welldispersed active species of SZ. Moreover, the esterification is catalyzed in heterogeneous mode as confirmed by negligible esterification after filtration of the catalyst. Finally, microwaves can be efficiently applied both in the synthesis of the composites and the esterification reaction to accelerate the two processes of synthesis and esterification by about 5 times.
Tantalum nitride (Ta3N5) is a nontoxic red pigment that is being developed as a substitute for Cd-related pigments Ta3N5 is produced by the nitridation and heat treatment of amorphous Tantalum precursors. Doping elements were added in the precursor manufacturing stage to improve the red color tone of tantalum nitride. Grain growth was observed in nitrides that formed second phases, such growth led to an increase in the average grain size comprared to undoped nitrides, and the colors declined as the oxygen content increased. Nitrides that did not form second phases in response to doping elements remained a single-phase Ta3N5 and exhibited an excellent red color with a high nitrogen content. We determined that a change in the oxygen/nitrogen contents affected the color manifestation, which depended on the amount by which doping was increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.