In modern transportation systems, an enormous amount of traffic data is generated every day. This has led to rapid progress in short-term traffic prediction (STTP), in which deep learning methods have recently been applied. In traffic networks with complex spatiotemporal relationships, deep neural networks (DNNs) often perform well because they are capable of automatically extracting the most important features and patterns. In this study, we survey recent STTP studies applying deep networks from four perspectives. 1) We summarize input data representation methods according to the number and type of spatial and temporal dependencies involved. 2) We briefly explain a wide range of DNN techniques from the earliest networks, including Restricted Boltzmann Machines, to the most recent, including graph-based and meta-learning networks. 3) We summarize previous STTP studies in terms of the type of DNN techniques, application area, dataset and code availability, and the type of the represented spatiotemporal dependencies. 4) We compile public traffic datasets that are popular and can be used as the standard benchmarks. Finally, we suggest challenging issues and possible future research directions in STTP.INDEX TERMS Artificial intelligence, deep neural network (DNN), intelligent transportation systems (ITS), neural networks, prediction algorithms, short-term traffic prediction (STTP), traffic forecasting
BERT-based Neural Ranking Models (NRMs) can be classified according to how the query and document are encoded through BERT's self-attention layers -bi-encoder versus cross-encoder. Biencoder models are highly efficient because all the documents can be pre-processed before the query time, but their performance is inferior compared to cross-encoder models. Both models utilize a ranker that receives BERT representations as the input and generates a relevance score as the output. In this work, we propose a method where multi-teacher distillation is applied to a crossencoder NRM and a bi-encoder NRM to produce a bi-encoder NRM with two rankers. The resulting student bi-encoder achieves an improved performance by simultaneously learning from a crossencoder teacher and a bi-encoder teacher and also by combining relevance scores from the two rankers. We call this method TRMD (Two Rankers and Multi-teacher Distillation). In the experiments, TwinBERT and ColBERT are considered as baseline bi-encoders. When monoBERT is used as the cross-encoder teacher, together with either TwinBERT or ColBERT as the bi-encoder teacher, TRMD produces a student bi-encoder that performs better than the corresponding baseline bi-encoder. For P@20, the maximum improvement was 11.4%, and the average improvement was 6.8%. As an additional experiment, we considered producing cross-encoder students with TRMD, and found that it could also improve the crossencoders. 1 CCS CONCEPTS• Information systems → Language models; • Computing methodologies → Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.