Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron's spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications.
Effect of Pt bottom electrode texture selection on the tetragonality and physical properties of Ba0.8Sr0.2TiO3 thin films produced by pulsed laser deposition J. Appl. Phys. 112, 044105 (2012) Relationship between dielectric coefficient and Urbach tail width of hydrogenated amorphous germanium carbon alloy films Appl. Phys. Lett. 101, 042109 (2012) Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systemsThe contrast mechanisms of domain imaging experiments assisted by atomic force microscope ͑AFM͒ have been investigated by model experiments on nonpiezoelectric ͑silicon oxide͒ and piezoelectric ͓Pb͑Zr,Ti͒O 3 ͔ thin films. The first step was to identify the electrostatic charge effects between the tip, the cantilever, and the sample surface. The second step was to explore the tipsample piezoelectric force interaction. The static deflection of the cantilever was measured as a function of dc bias voltage (V dc ) applied to the bottom electrode ͑n-type Si wafers͒ for noncontact and contact modes. In addition, a small ac voltage (V ac sin t) was applied to the tip to measure the amplitude (A ) and phase (⌽ ) of the first harmonic ͑͒ signal as a function of V dc . By changing from the noncontact to the contact mode, a repulsive contribution to the static deflection was found in addition to the attractive one and a 180°phase shift in ⌽ was observed. These results imply that in the contact mode the cantilever buckling is induced by the capacitive force between the cantilever and the sample surface. This interaction adds to the tip-sample piezoelectric interaction thereby overlapping the obtained tip vibration signal. Therefore, the antiparallel ferroelectric domain images obtained at zero dc bias voltage will show a variation in A but a negligible one in ⌽ . The capacitive force contribution to the tip vibration signal was further verified in piezoelectric hysteresis loop measurement assisted by the AFM. The observed vertical offset of the loops was explained by the contact potential difference between the cantilever and the bottom electrode. The shape of the curve could be explained by the capacitive force interaction combined with the tip-sample piezoelectric interaction. The experimental results obtained in this study support the interpretation of the cantilever-sample capacitive force contribution to the tip vibration signal in ferroelectric domain imaging experiments using AFM as a probing tool. The use of a large area top electrode between the tip and the sample resulted in the elimination of the electrostatic cantileversample interaction with negligible degradation of the domain contrast. This method proved to be successful because the cantilever-sample interaction was hardly detected and only the tip-sample interaction was observed.
Friedreich’s ataxia (FRDA) is caused by biallelic expansion of GAA repeats leading to the transcriptional silencing of the frataxin (FXN) gene. The exact molecular mechanism of inhibition of FXN expression is unclear. Herein, we analyze the effects of hyperexpanded GAA repeats on transcription status and chromatin modifications proximal and distal to the GAA repeats. Using chromatin immunoprecipitation and quantitative PCR we detected significant changes in the chromatin landscape in FRDA cells relative to control cells downstream of the promoter, especially in the vicinity of the GAA tract. In this region, hyperexpanded GAAs induced a particular constellation of histone modifications typically associated with heterochromatin-like structures. Similar epigenetic changes were observed in GFP reporter construct containing 560 GAA repeats. Furthermore, we observed similar levels of FXN pre-mRNA at a region upstream of hyperexpanded GAA repeats in FRDA and control cells, indicating similar efficiency of transcription initiation. We also demonstrated that histone modifications associated with hyperexpanded GAA repeats are independent of initiation and progression of transcription. Our data provide strong evidence that FXN deficiency in FRDA patients results from a block of transition from initiation to a productive elongation of FXN transcription due to heterochromatin-like structures formed in the proximity of the hyperexpanded GAAs.
The emergence of a plant vascular system was a prerequisite for the colonization of land; however, it is unclear how the photosynthate transporting system was established during plant evolution. Here, we identify a novel translational regulatory module for phloem development involving the zinc-finger protein JULGI (JUL) and its targets, the 5' untranslated regions (UTRs) of the SUPPRESSOR OF MAX2 1-LIKE4/5 (SMXL4/5) mRNAs, which is exclusively conserved in vascular plants. JUL directly binds and induces an RNA G-quadruplex in the 5' UTR of SMXL4/5, which are key promoters of phloem differentiation. We show that RNA G-quadruplex formation suppresses SMXL4/5 translation and restricts phloem differentiation. In turn, JUL deficiency promotes phloem formation and strikingly increases sink strength per seed. We propose that the translational regulation by the JUL/5' UTR G-quadruplex module is a major determinant of phloem establishment, thereby determining carbon allocation to sink tissues, and that this mechanism was a key invention during the emergence of vascular plants.
Antimicrobial susceptibility patterns and -lactam resistance mechanisms of 544 Haemophilus influenzae isolates through the nationwide Acute Respiratory Infections Surveillance (ARIS) network in Korea during 2005 and 2006 were determined. Resistance to ampicillin was 58.5%, followed by resistance to cefuroxime (23.3%), clarithromycin (18.7%), cefaclor (17.0%), amoxicillin-clavulanate (10.4%), and chloramphenicol (8.1%). Levofloxacin and cefotaxime were the most active agents tested in this study. -Lactamase production (52.4%) was the main mechanism of ampicillin resistance, affecting 96.1% of TEM-1-type -lactamase. According to their -lactam resistance mechanisms, all isolates were classified into the following groups: -lactamase-negative, ampicillin-sensitive (BLNAS) strains (n ؍ 224; 41.5%); -lactamase-positive, ampicillin-resistant (BLPAR) strains (n ؍ 255; 47.2%); -lactamase-negative, ampicillin-resistant (BLNAR) strains (n ؍ 33; 6.1%); and -lactamase-positive, amoxicillin-clavulanate-resistant (BLPACR) strains (n ؍ 28; 5.2%). Among the BLNAR and BLPACR strains, there were various patterns of multiple-amino-acid substitutions in penicillin-binding protein 3. Particularly, among BLNAR, group III isolates, which had three simultaneous substitutions (Met377Ile, Ser385Thr, and Leu389Phe), were identified for the first time in Korea. Three group III strains displayed the highest MIC of cefotaxime (1 to 2 g/ml). The results indicate the importance of monitoring a changing situation pertaining to the increase and spread of BLNAR and BLPACR strains of H. influenzae for appropriate antibiotic therapy for patients with respiratory tract infections in Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.