Background: Cordyceps militaris (L.) Fr. (C. militaris) exhibits pharmacological activities, including antitumor properties, through the regulation of the nuclear factor kappa B (NF-κB) signaling. Tumor Necrosis Factor (TNF) and TNF-α modulates cell survival and apoptosis through NF-κB signaling. However, the mechanism underlying its mode of action on the NF-κB pathway is unclear. Methods: Here, we analyzed the effect of C. militaris extract (CME) on the proliferation of ovarian cancer cells by confirming viability, morphological changes, migration assay. Additionally, CME induced apoptosis was determined by apoptosis assay and apoptotic body formation under TEM. The mechanisms of CME were determined through microarray, immunoblotting and immunocytochemistry. Results: CME reduced the viability of cells in a dose-dependent manner and induced morphological changes. We confirmed the decrease in the migration activity of SKOV-3 cells after treatment with CME and the consequent induction of apoptosis. Immunoblotting results showed that the CME-mediated upregulation of tumor necrosis factor receptor 1 (TNFR1) expression induced apoptosis of SKOV-3 cells via the serial activation of caspases. Moreover, CME negatively modulated NF-κB activation via TNFR expression, suggestive of the activation of the extrinsic apoptotic pathway. The binding of TNF-α to TNFR results in the disassociation of IκB from NF-κB and the subsequent translocation of the active NF-κB to the nucleus. CME clearly suppressed NF-κB translocation induced by interleukin (IL-1β) from the cytosol into the nucleus. The decrease in the expression levels of B cell lymphoma (Bcl)-xL and Bcl-2 led to a marked increase in cell apoptosis. Conclusion: These results suggest that C. militaris inhibited ovarian cancer cell proliferation, survival, and migration, possibly through the coordination between TNF-α/TNFR1 signaling and NF-κB activation. Taken together, our findings provide a new insight into a novel treatment strategy for ovarian cancer using C. militaris.
The chemokine, CCL5, is a key mediator for the recruitment of immune cells into tumors and tissues. Akt/NF-κB signaling is significantly activated by CCL5. However, the role of NF-κB inactivation in apoptosis induced by negative regulation of CCL5 remains unclear. Here, we analyzed the effect of cordycepin on NF-κB activity in SKOV-3 cells and found that cordycepin-mediated inhibition of NF-κB signaling induced apoptosis in SKOV-3 cells via the serial activation of caspases. In addition, immune-blotting analysis showed that CCL5 is highly expressed in SKOV-3 cells. In addition to activating caspases, we show that, cordycepin prevents TNF-α-induced increase in CCL5, Akt, NF-κB, and c-FLIPL activation and that CCL5 siRNA could inhibit Akt/NF-κB signaling. Moreover, cordycepin negatively regulated the TNF-α-mediated IκB/NF-κB pathway and c-FLIPL activation to promote JNK phosphorylation, resulting in caspase-3 activation and apoptosis. Also, we show that c-FLIPL is rapidly lost in NF-κB activation-deficient. siRNA mediated c-FLIP inhibition increased JNK. SP600125, a selective JNK inhibitor, downregulated p-JNK expression in cordycepin-treated SKOV-3 cells, leading to suppression of cordycepin-induced apoptosis. Thus, these results indicate that cordycepin inhibits CCL5-mediated Akt/NF-κB signaling, which upregulates caspase-3 activation in SKOV-3 cells, supporting the potential of cordycepin as a therapeutic agent for ovarian cancer.
Forkhead transcription factor (Foxo3a) is a downstream effector of JNK-induced tumor suppression. However, it is not clear whether the caveolin-1 (CAV1)-mediated JNK/Foxo3a pathway is involved in cancer cell apoptosis. We found that cordycepin upregulates CAV1 expression, which was accompanied by JNK phosphorylation (p-JNK) and subsequent Foxo3a translocation into the nucleus, resulting in the upregulation of Bax protein expression. Furthermore, we found that CAV1 overexpression upregulated p-JNK, whereas CAV1 siRNA downregulated p-JNK. Additionally, SP600125, a specific JNK inhibitor, significantly increased Foxo3a phosphorylation, which downregulated Foxo3a translocation into the nucleus, indicating that CAV1 mediates JNK regulation of Foxo3a. Foxo3a siRNA downregulated Bax protein and attenuated A549 apoptosis, indicating that the CAV1-mediated JNK/Foxo3a pathway induces the apoptosis of A549 lung cancer cells. Cordycepin significantly decreased tumor volume in nude mice. Taken together, these results indicate that cordycepin promotes CAV1 upregulation to enhance JNK/Foxo3a signaling pathway activation, inducing apoptosis in lung cancer cells, and support its potential as a therapeutic agent for lung cancer.
Cellular FLICE inhibitory protein (c-FLIP) is a key anti-apoptotic regulator that associates with the signaling complex downstream of NF-κB, negatively interfering with apoptotic signaling. The role of c-FLIP downregulation by negative regulation of NF-κB signaling during apoptosis is poorly understood. Here, we demonstrate that NF-κB-mediated c-FLIPL negatively regulates the JNK signaling pathway, and that cordycepin treatment of human renal cancer cells leads to apoptosis induction through c-FLIPL inhibition. TNF-α-induced inflammatory microenvironments stimulated NF-κB signaling and the c-FLIP long form (c-FLIPL) in TK-10 cells. Specifically, cordycepin inhibited TNF-α-mediated NF-κB activation, which induced renal cancer cell apoptosis. Cordycepin downregulated GADD45B and c-FLIPL, but upregulated MKK7 and phospho-JNK, by preventing nuclear mobilization of NF-κB. Furthermore, siRNA-mediated knockdown of GADD45B in cordycepin-treated TK-10 cells considerably increased MKK7 compared to cordycepin alone. siRNA-mediated knockdown of c-FLIPL prevented TNF-α-induced JNK inactivation, whereas c-FLIPL overexpression inhibited cordycepin-mediated JNK activation. The JNK inhibitor SP600125 strongly inhibited Bax expression. In nude mice, cordycepin significantly decreased tumor volume. Taken together, the results indicate that cordycepin inhibits TNF-α-mediated NF-κB/GADD45B signaling, which activates the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression, thus inducing TK-10 cell apoptosis.
Abstract. Panax ginseng has been used worldwide as a traditional medicine for the treatment of cancer and other diseases. The antiproliferative activity of ginseng has been increased after enzymatic processing of ginseng saponin, which may result in the accumulation of minor saponins, such as Rh2, Rg3, compound K and protopanaxatriol type (PPT) in modified regular ginseng extract (MRGX). In the present study, the anticancer activity and the associated mechanisms of MRGX were investigated using A549 human lung cancer cells. To elucidate the mechanisms underlying the effects of MRGX, we performed a microarray analysis of gene expression in the A549 cells. Molecular mechanisms that were associated with the anticancer activity of MRGX were studied, with a special focus on the autophagy-related multiple signaling pathways in lung cancer cells. Microarray analyses elucidated autophagyrelated genes affected by MRGX. Administration of MRGX at 100 µg/ml induced punctate cytoplasmic expression of LC3, Beclin-1 and ATG5 and increased expression of endogenous LC3-II whereas 50 µg/ml did not inhibit the proliferation of A549 cells. Compared to the control cells, in cells treated with MRGX at 100 µg/ml, the level of p-Akt was increased, while that of mTOR-4EBP1 was decreased. Downregulation of mTOR and 4EBP1 in the MRGX-treated cells was found not to be a p-Ulk (S757)-dependent pathway, but a p-Ulk (S317)-dependent autophagic pathway, using AMPK. These data suggest that MRGX regulates AMPK and induces autophagy in lung cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.