In the field of evolutionary algorithm music composition, most of the current researches focus on how to enhance environmental selection based on multi-objective evolutionary algorithms (MOEAs). However, the real music composition process defined as large-scale multi-optimization problems (LSMOP) involve the number of combinations, and the existing MOEA-based optimization process can be challenging to effectively explore the search space. To address this issue, we propose a new Multi-Objective Generative Deep network-based Estimation of Distribution Algorithm (MODEDA) based on dimensionality reduction in decision space. In order to alleviate the difficulties with dimensional transformation, we propose a novel solution search method that optimizes in the transformed space and ensures consistency between the pareto sets of the original problem. The proposed algorithm is tested on the knapsack problems and music composition experiments. The experimental results have demonstrated that the proposed algorithm has excellency in terms of its optimization performance and computational efficiency in LSMOP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.