Mucin1 (MUC1) is aberrantly glycosylated and overexpressed in various cancers, and it plays a crucial role in cancerogenesis. MUC1 is a type I membranous protein composed of α and β subunits. MUC1-α can be cleaved in cancers, exposing MUC1-β (MUC1-C). MUC1-C is involved with multiple cancer cellular functions, which makes it an attractive target for cancer treatment. However, its multifunctional mechanisms have not been fully elucidated and there has not been a successful therapeutic development against MUC1-C. Through a phage display process, we isolated the specific antibodies for the extracellular domain of MUC1-C. The relevant full IgG antibodies were produced successfully from mammalian cells and validated for their MUC1-C specificities through ELISA, dual FACS analysis, BLI assay, and confocal image analysis. In the comparison with reference antibody, elected antibodies showed characteristic bindings on target antigens. In the functionality assessment of high-ranking antibodies, SKM1-02, -13, and -20 antibodies highly inhibited invasion by triple-negative breast cancer (TNBC) cells and the SKM1-02 showed strong growth inhibition of cancer cells. Our results showed that these MUC1-C specific antibodies will be important tools for the understanding of MUC1 oncogenesis and are also highly effective therapeutic candidates against human breast cancers, especially TNBC cells.
We constructed a large naïve human Fab library (3 × 1010 colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and κ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.
The therapeutic functionality of the antibodies from phage display is verified after an initial screening. Several immunological assays such as ELISA, flow cytometry, the western blot, and surface plasmon resonance (SPR) assay are commonly used; the IgG-format antibody is usually preferred to verify the functionality of antibodies, which need elaborative mammalian expression and purification work. Here, we describe a biolayer interferometry (BLI)-based assay that can evaluate the inhibitory functions of antibodies at an earlier stage of screening. To develop a PD-L1-targeting antibody from phage display, we applied the BLI assay to the initial scFv antibody screening, in addition to common ELISA and fluorescence-activated cell sorting (FACS) assays, which showed high advantages and relevance with the in vitro cell-based PD-1/PD-L1 inhibition assay. The same assays for IgG-format antibodies showed high efficiency of the BLI assay in the functional characterization of antibodies, and one candidate selected from the BLI assay resulted in highly efficacious antitumor activity in an in vivo syngeneic mouse study. The BLI assay was also beneficial when searching for antibodies with diverse epitopes. These results demonstrated that the BLI-based inhibition assay is an excellent technique for high-throughput scFv antibody screening in earlier stages and can make phage-display antibody screening more efficient to develop therapeutic candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.