Phytoplankton in the Arctic Ocean are subject to nitrogen limitation in the summer, however, how severely the nitrogen stress affects phytoplankton physiology remains largely unknown. In the summers of 2015-2018, we examined the distribution of phytoplankton photophysiological properties across two contrasting regions of the Arctic Ocean with distinctly different levels of nitrogen availability in the upper water column. We quantified the extent of nitrogen stress using a highly sensitive fluorescence induction and relaxation system to obtain continuous underway measurements and via discrete sample analyses of phytoplankton physiology, as well as nutrient enrichment incubations. The results revealed vast regions in the Chukchi Sea where phytoplankton photosynthesis was severely nitrogen-stressed. Thereby, the maximum quantum yield of photochemistry in photosystem II showed only a small decrease (12 ± 9%) relative to its nutrient-replete values, while the maximum photosynthetic electron transport rates under saturating irradiance were impaired to a greater extent (40 ± 17%). This phytoplankton photosynthesis response is indicative of a severe nitrogen limitation, which results in dramatic reduction in growth and net primary production rates. Nutrient enrichment incubations also revealed a marked increase in large-size phytoplankton growth (>10 μm) after the nitrogen stress was alleviated, suggesting that the larger cells were more susceptible to nitrogen stress. These results are important for understanding how regional nitrogen fluxes control variability in the primary production and phytoplankton community structure and how these processes might change with rapid climate changes in the Arctic Ocean. Plain Language Summary Nutrient availability is the main bottom-up controls of phytoplankton physiology and growth in the upper ocean. The distribution of nutrient limitation in the global ocean varies greatly in space and time, so phytoplankton responses to this factor are essential for understanding the marine ecosystem. Although nitrogen limitation was previously shown in the Arctic Ocean in the summer, how nitrogen stress affects phytoplankton physiology remains largely unknown. This study investigates, with high spatial resolution, the distribution of phytoplankton physiological status and quantifies the effects of nitrogen stress in the western Arctic Ocean. Our results revealed severe nitrogen limitation in the summer that results in dramatic reduction in growth and net primary production in this region of the ocean. Therefore, alterations in nitrogen fluxes along with climate change in the Arctic Ocean would be important for controlling phytoplankton growth and primary production in this region.
To understand what controls the decoupling of photosynthetic electron transfer and carbon fixation in natural phytoplankton communities, we compared the primary production rates estimated by 14 C uptake and fast repetition rate fluorometry (FRRF) in Korean waters under diverse environmental conditions. Our comparison showed that these 2 methods produce consistent results, with the FRRF method systematically yielding 1.9 times higher values than the 14 C method. To quantify the potential factors that contribute to this discrepancy, we analyzed the variability in the electron requirement for carbon fixation, which showed a wide range of 5.5−71.3 mol electrons (mol CO 2) −1 , in relation to environmental variables. The analysis revealed that nutrient availability and the state of stratification may be the major factors that control variability in the electron requirement for carbon fixation. The strong dependence on nitrogen suggests that photosynthetic processes and phytoplankton growth are not in balance in natural communities. Based on the relationship with environmental variables, we propose a regional algorithm for the electron requirement for carbon fixation, which markedly improves FRRF-based measurements of primary production in this geographical area.
Vertical distributions of phytoplankton in the Arctic Ocean are characterized by a very narrow subsurface chlorophyll maximum (SCM) layer formed every summer after the sea ice retreats. Despite the prevalence of this narrow SCM layer, phytoplankton photosynthetic response to climate change remains to be elucidated. Here, we examined the photophysiological properties of phytoplankton in the SCM layer in the northern Chukchi Sea during the summers of 2015–2018. There was a significant difference in the SCM depth between the northwestern and northeastern Chukchi Sea determined by the distribution of Pacific Summer Water (PSW) around the SCM layer (34 ± 14 m vs. 49 ± 10 m, respectively). The maximum quantum yield of photochemistry in photosystem II (Fv/Fm) in the SCM phytoplankton was high (Fv/Fm ≥ 0.54) and similar in both regions until 2016; however, since then, Fv/Fm in the northeastern Chukchi Sea has decreased by approximately 10%. This decrease was accompanied by a marked decrease in the fraction of microplankton, which are known to be susceptible to nutrient limitation. This result suggests a reduction in nitrogen availability in the SCM layer in the northeastern Chukchi Sea. Meanwhile, the maximum electron transfer rate (ETRmax) did not have a significant relationship with the nitrogen availability and phytoplankton community size structure in the SCM layer; however the improved light conditions (with an approximately two-fold increase in the relative ratio of surface PAR reaching the SCM layer) increased ETRmax by up to 30% in the SCM phytoplankton in the northwestern Chukchi Sea. Therefore, these results provide a better understanding of how changes in nitrogen and light availability could affect phytoplankton photosynthesis and primary production in the Arctic Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.