SummaryTheory predicts patterns of defense across taxa based on notions of tradeoffs and synergism among defensive traits when plants and herbivores coevolve. Because the expression of characters changes ontogenetically, the evolution of plant strategies may be best understood by considering multiple traits along a trajectory of plant development.Here we addressed the ontogenetic expression of chemical and physical defenses in 12 Datura species, and tested for macroevolutionary correlations between defensive traits using phylogenetic analyses. We used liquid chromatography coupled to mass spectrometry to identify the toxic tropane alkaloids of Datura, and also estimated leaf trichome density.We report three major patterns. First, we found different ontogenetic trajectories of alkaloids and leaf trichomes, with alkaloids increasing in concentration at the reproductive stage, whereas trichomes were much more variable across species. Second, the dominant alkaloids and leaf trichomes showed correlated evolution, with positive and negative associations. Third, the correlations between defensive traits changed across ontogeny, with significant relationships only occurring during the juvenile phase.The patterns in expression of defensive traits in the genus Datura are suggestive of adaptation to complex selective environments varying in space and time.
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off) between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-offs might occur between specific defense traits.Methodology/Principal Findings. We experimentally assessed (1) the presence of genetic variance in tolerance, total resistance, and leaf trichome density as specific defense trait, (2) the extent of natural selection acting on plant defenses, and (3) the relationship between total resistance and leaf trichome density with tolerance to herbivory in the annual herb Datura stramonium. Full-sib families of D. stramonium were either exposed to natural herbivores (control) or protected from them by a systemic insecticide. We detected genetic variance for leaf trichome density, and directional selection acting on this character. However, we did not detect a negative significant correlation between tolerance and total resistance, or between tolerance and leaf trichome density. We argue that low levels of leaf damage by herbivores precluded the detection of a negative genetic correlation between plant defense strategies.Conclusions/Significance. This study provides empirical evidence of the independent evolution of plant defense strategies, and a defensive role of leaf trichomes. The pattern of selection should favor individuals with high trichomes density. Also, because leaf trichome density reduces damage by herbivores and possess genetic variance in the studied population, its evolution is not constrained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.