Recent studies in Drosophila melanogaster of the protocadherins Dachsous and Fat suggest that they act as ligand and receptor, respectively, for an intercellular signaling pathway that influences tissue polarity, growth and gene expression, but the basis for signaling downstream of Fat has remained unclear. Here, we characterize functional relationships among D. melanogaster tumor suppressors and identify the kinases Discs overgrown and Warts as components of a Fat signaling pathway. fat, discs overgrown and warts regulate a common set of downstream genes in multiple tissues. Genetic experiments position the action of discs overgrown upstream of the Fat pathway component dachs, whereas warts acts downstream of dachs. Warts protein coprecipitates with Dachs, and Warts protein levels are influenced by fat, dachs and discs overgrown in vivo, consistent with its placement as a downstream component of the pathway. The tumor suppressors Merlin, expanded, hippo, salvador and mob as tumor suppressor also share multiple Fat pathway phenotypes but regulate Warts activity independently. Our results functionally link what had been four disparate groups of D. melanogaster tumor suppressors, establish a basic framework for Fat signaling from receptor to transcription factor and implicate Warts as an integrator of multiple growth control signals.
The dachs gene was first identified almost a century ago based on its requirements for appendage growth, but has been relatively little studied. Here, we describe the phenotypes of strong dachs mutations, report the cloning of the dachs gene, characterize the localization of Dachs protein, and investigate the relationship between Dachs and the Fat pathway. Mutation of dachs reduces, but does not abolish, the growth of legs and wings. dachs encodes an unconventional myosin that preferentially localizes to the membrane of imaginal disc cells. dachs mutations suppress the effects of fat mutations on gene expression, cell affinity and growth in imaginal discs. Dachs protein localization is influenced by Fat, Four-jointed and Dachsous, consistent with its genetic placement downstream of fat. However, dachs mutations have only mild tissue polarity phenotypes, and only partially suppress the tissue polarity defects of fat mutants. Our results implicate Dachs as a crucial downstream component of a Fat signaling pathway that influences growth, affinity and gene expression during development.
In the Drosophila wing, distal cells signal to proximal cells to induce the expression of Wingless, but the basis for this distal-to-proximal signaling is unknown. Here, we show that three genes that act together during the establishment of tissue polarity, fat, four-jointed and dachsous, also influence the expression of Wingless in the proximal wing. fat is required cell autonomously by proximal wing cells to repress Wingless expression, and misexpression of Wingless contributes to proximal wing overgrowth in fat mutant discs. Four-jointed and Dachsous can influence Wingless expression and Fat localization nonautonomously, consistent with the suggestion that they influence signaling to Fat-expressing cells. We also identify dachs as a gene that is genetically required downstream of fat, both for its effects on imaginal disc growth and for the expression of Wingless in the proximal wing. Our observations provide important support for the emerging view that Four-jointed, Dachsous and Fat function in an intercellular signaling pathway, identify a normal role for these proteins in signaling interactions that regulate growth and patterning of the proximal wing, and identify Dachs as a candidate downstream effector of a Fat signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.