There are many studies that seek to enhance a low resolution image to a high resolution image in the area of super-resolution. As deep learning technologies have recently shown impressive results on the image interpolation and restoration field, recent studies are focusing on convolutional neural network (CNN)-based super-resolution schemes to surpass the conventional pixel-wise interpolation methods. In this paper, we propose two lightweight neural networks with a hybrid residual and dense connection structure to improve the super-resolution performance. In order to design the proposed networks, we extracted training images from the DIVerse 2K (DIV2K) image dataset and investigated the trade-off between the quality enhancement performance and network complexity under the proposed methods. The experimental results show that the proposed methods can significantly reduce both the inference speed and the memory required to store parameters and intermediate feature maps, while maintaining similar image quality compared to the previous methods.
Since high quality realistic media are widely used in various computer vision applications, image compression is one of the essential technologies to enable real-time applications. Image compression generally causes undesired compression artifacts, such as blocking artifacts and ringing effects. In this study, we propose a densely cascading image restoration network (DCRN), which consists of an input layer, a densely cascading feature extractor, a channel attention block, and an output layer. The densely cascading feature extractor has three densely cascading (DC) blocks, and each DC block contains two convolutional layers, five dense layers, and a bottleneck layer. To optimize the proposed network architectures, we investigated the trade-off between quality enhancement and network complexity. Experimental results revealed that the proposed DCRN can achieve a better peak signal-to-noise ratio and structural similarity index measure for compressed joint photographic experts group (JPEG) images compared to the previous methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.