Orexin-A and orexin-B (also called hypocretin-1 and hypocretin-2, respectively) are novel hypothalamic neuropeptides encoded by a single mRNA transcript; they stimulate food intake. We have determined the three-dimensional solution structure of human hypocretin-2/orexin-B using two-dimensional 1H-NMR data and dynamical simulated annealing calculations. On the basis of NOEs, 3JHNalpha coupling constants and hydrogen-deuterium exchange rates together with chemical shift indices, human hypocretin-2/orexin-B was deduced to consist of two alpha-helices connected with a short linker in both H2O and 30% trifluoroethanol solutions. The helical axis of helix I is oriented about 60-80 degrees relative to helix II. Hybrid distance geometry and simulated-annealing protocols were used to generate an ensemble of 30 structures with no constraint violations greater than 0.03 nm for distances and 3 degrees for angles. In addition, human hypocretin-2/orexin-B shares a similar secondary-structural motif with human neuropeptide Y. This result can form the basis for further study on ligand-receptor recognition of human orexin receptors.
Fusaricidins produced by Paenibacillus polymyxa DBB1709 are lipopeptide antibiotics active against fungi and Gram-positive bacteria. The cyclic hexapeptide structures of fusaricidins are synthesized by fusaricidin synthetase, a non-ribosomal peptide synthetase. The adenylation domain of the third module (FusA-A3) can recruit L: -Tyr, L: -Val, L: -Ile, L: -allo-Ile, or L: -Phe, which diversifies the fusaricidin structures. Since the L: -Phe-incorporated fusaricidin analog (LI-F07) exhibits more potent antimicrobial activity than other analogs, we modified a specificity-conferring sequence in the substrate binding pocket of FusA-A3 to direct the enhanced production of LI-F07. Base on comparison to the adenylation domain of gramicidin S synthetase 1 and tyrocidine synthetase 1, both of which mainly activate L: -Phe, six mutant strains with altered FusA-A3 were generated using site-directed mutagenesis. M3 (I239W, I299V), M5 (I299V, G322A, V330I), and M6 (S239W, I299V, G322A, V330I) mutants produced significantly more LI-F07 than the wild-type strain.
Subanesthetic doses of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, impair prefrontal cortex (PFC) function in the rat and produce symptoms in humans similar to those observed in patients with schizophrenia. In the present study, in vivo (1) H-MRS and ex vivo (1) H high-resolution magic angle spinning (HR-MAS) spectroscopy was used to examine the brain metabolism of rats treated with subanesthetic doses of ketamine (30 mg/kg) for 6 days. A single voxel localization sequence (PRESS, TR/TE = 4000/20 ms and NEX=512) was used to acquire the spectra in a 30-µl voxel positioned in the cerebral cortex (including mainly PFC) of the rats (ketamine group: n=12; saline group: n=12) anesthetized with isoflurane. After the in vivo (1) H-MRS acquisition, the animals were sacrificed and the cerebral cortex tissues were extracted (ketamine group: n=7; saline group: n=7) for ex vivo (1) H HR-MAS spectroscopy (CPMG sequence, 2.0-s presaturation delay, 2.0-s acquisition time, 128 transients and 4-ms inter-pulse delay) using a 500-MHz NMR spectrometer. All proton metabolites were quantified using the LCModel. For the in vivo spectra, there was a significant increase in glutamate concentration in the cerebral cortex of the ketamine group compared with the controls (p<0.05). For the ex vivo HR-MAS spectra, there was a significant increase in the glutamate/total creatine ratio, and a decrease in the glutamine/total creatine and glutamine/glutamate ratios in the cerebral cortex tissue of the ketamine group compared with the controls. The results of the present study demonstrated that administration of subanesthetic doses of ketamine in the rat may exert at least part of their effect in the cerebral cortex by activation of glutamatergic neurotransmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.