Due to the heterogeneity of demand response behaviors among customers, selecting a suitable segment is one of the key factors for the efficient and stable operation of the demand response (DR) program. Most utilities recognize the importance of targeted enrollment. Customer targeting in DR programs is normally implemented based on customer segmentation. Residential customers are characterized by low electricity consumption and large variability across times of consumption. These factors are considered to be the primary challenges in household load profile segmentation. Existing customer segmentation methods have limitations in reflecting daily consumption of electricity, peak demand timings, and load patterns. In this study, we propose a new clustering method to segment customers more effectively in residential demand response programs and thereby, identify suitable customer targets in DR. The approach can be described as a two-stage k-means procedure including consumption features and load patterns. We provide evidence of the outstanding performance of the proposed method compared to existing k-means, Self-Organizing Map (SOM) and Fuzzy C-Means (FCM) models. Segmentation results are also analyzed to identify appropriate groups participating in DR, and the DR effect of targeted groups was estimated in comparison with customers without load profile segmentation. We applied the proposed method to residential customers who participated in a peak-time rebate pilot DR program in Korea. The result proves that the proposed method shows outstanding performance: demand reduction increased by 33.44% compared with the opt-in case and the utility saving cost in DR operation was 437,256 KRW. Furthermore, our study shows that organizations applying DR programs, such as retail utilities or independent system operators, can more economically manage incentive-based DR programs by selecting targeted customers.
The rapid increase in renewable energy resources has resulted in the increasing need for a demand flexibility program (DFP) from industrial load resources as a solution to oversupply and peak load spikes. However, to reasonably estimate the DR potential flexibility, the load characteristics must be analyzed and potential assessment formulas must be validated. Thus, in this study, a novel method is proposed to evaluate the DR potential flexibility of industrial loads according to a process of related load-characteristic data analysis. The proposed potential-estimation model considers frequency, consistency, and DR event operation scores during designated ramp-up and ramp-down time intervals separately. A case study was conducted by considering typical cement industry process with actual power-consumption data analysis for demonstrating the test system. The results confirm that load reduction of more than half of the usual power consumption is possible if a potential score is about 0.27 in cement industry cases. Thus, the proposed method can be used as an indicator to determine how an industrial load is adequate for obtaining a DFP while suggesting meaningful implications through industrial load-resource data analysis.
Recent demand response (DR) research efforts have focused on reducing the peak demand, and thereby electricity prices. Load reductions from DR programs can be viewed as equivalent electricity generation by conventional means. Thus, utility companies must pay incentives to customers who reduce their demand accordingly. However, many key variables intrinsic to residential customers are significantly more complicated compared to those of commercial and industrial customers. Thus, residential DR programs are economically difficult to operate, especially because excess incentive settlements can result in free riders, who get incentives without reducing their loads. Improving baseline estimation accuracy is insufficient to solve this problem. To alleviate the free rider problem, we proposed an improved two-step method—estimating the baseline load using regression and implementing a minimum-threshold payment rule. We applied the proposed method to data from residential customers participating in a peak-time rebate program in Korea. It initially suffered from numerous free riders caused by inaccurate baseline estimation. The proposed method mitigated the issue by reducing the number of free riders. The results indicate the possibility of lowering the existing incentive payment. The findings indicate that it is possible to run more stable residential DR programs by mitigating the uncertainty associated with customer electricity consumption.
This study describes the release of electricity consumption data of some manufacturing factories located in South Korea that participate in the demand response (DR) market. The data (in kilowatt) comprise individual factories’ total power usage details that were acquired using advanced metering infrastructures. They further contain details on the manufacture types, DR participation dates, mandatory reduction capacities, and response capacities of the factories. For data acquisition, 10 manufacturing companies are representatively selected according to the process regularity and company size standard of this study. Entire datasets are newly collected and available at one-minute intervals for seven months from 1 March to 30 September 2019. These datasets can be used in a variety of ways to contribute to the functioning of power systems and markets, including the conduction of industrial load characteristic analysis for load flexibility, estimation of demand-side considerations for virtual power plant design, and determination of energy markets and incentives to achieve carbon neutrality targets at the national level.
Under the carbon-neutral environment, the number of renewable power sources needs to be drastically increased. To respond to the large variability derived from renewable power sources, potential flexible resources have been established and researched. Among these, securing flexibility by using demand is achieved through demand response. For this purpose, it is helpful to identify flexumers-consumers with flexibility-for each player involved in the demand response. To identify the characteristics of flexumers among the demand consumers, we propose a method to classify the characteristics of flexumers into four groups based on power consumption data: price responsivity score, consistency score, flexible amount, and response time score. To verify the effectiveness of the proposed classification, the test system was evaluated with the power-consumption data from 19 companies in 11 industries. One company in the steel industry scored remarkably high in terms of a flexible amount. Overall, companies in the energy, chemical, material, filter and cement industries relatively showed characteristics suitable to flexumers. The suitability for flexumer application was quantitatively compared between industries, and other implications included the scope of criteria application and the direction of formula improvement. With the electrification of other industries, sector coupling, and the digitization of the power industry, the identification of flexumers in demand will significantly alter the plans for securing power-system flexibility. Therefore, the proposed flexumer characteristic formulas can contribute to the advancement of empirical data-based power-industry modeling by classifying resources with flexumer characteristics among the demand agents in the power system model. INDEX TERMSAnalysis of power industry players, consumer classification, data analysis flexumer, industrial power demand, power consumption data. NOMENCLATURE A. INDICES
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.