Tunnel junctions (TJs) are essential for high-performance multijunction solar cells to act as transparent low resistance paths for carriers to travel between adjacent cells. However, TJs typically exhibit highly degraded tunneling performance due to unwanted dopant out-diffusion during top cell growth. In this study, GaAs TJs with Si and Te delta-doping (δ-doping) were grown via solid source molecular beam epitaxy to investigate the tunneling performance and thermal stability. While Si δ-doped TJs exhibited typical tunneling characteristics with an Esaki peak current density of 173 A/cm2, Te δ-doped TJs revealed 1.5 A/cm2 at Vbias = 100 mV without negative resistance. It was found that the performance degradation after annealing at 600 °C for 90 min was significantly higher for TJs with Si δ-doping than for Te. Secondary ion mass spectroscopy measurements reveal that Te shows no clear signs of dopant diffusion while Si exhibited significant out-diffusion in the active TJ layer after thermal annealing. The superior thermal stability of Te compared to Si proves to be advantageous as an alternative n-type dopant for high temperature and long duration grown multi-junction solar cells.
Epitaxial growth of III–V materials on Si is a promising approach for large-scale, relatively low-cost, and high-efficiency Si-based multi-junction solar cells. Several micron-thick III–V compositionally graded buffers are typically grown to reduce the high threading dislocation density that arises due to the lattice mismatch between III–V and Si. Here, we show that optically transparent n-In0.1Al0.9As/n-GaAs strained layer superlattice dislocation filter layers can be used to reduce the threading dislocation density in the GaAs buffer on Si while maintaining the GaAs buffer thickness below 2 μm. Electron channeling contrast imaging measurements on the 2 μm n-GaAs/Si template revealed a threading dislocation density of 6 × 107 cm−2 owing to the effective n-In0.1Al0.9As/n-GaAs superlattice filter layers. Our GaAs/Si tandem cell showed an open-circuit voltage of 1.28 V, Si bottom cell limited short-circuit current of 7.2 mA/cm2, and an efficiency of 7.5%. This result paves the way toward monolithically integrated triple-junction solar cells on Si substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.