Lung diseases, such as pulmonary hypertension and pulmonary fibrosis, are life-threatening diseases and have common features of vascular remodeling. During progression, extracellular matrix protein deposition and dysregulation of proteolytic enzymes occurs, which results in vascular stiffness and dysfunction. Although vasodilators or anti-fibrotic therapy have been mainly used as therapy owing to these characteristics, their effectiveness does not meet expectations. Therefore, a better understanding of the etiology and new therapeutic approaches are needed. Endothelial cells (ECs) line the inner walls of blood vessels and maintain vascular homeostasis by protecting vascular cells from pathological stimuli. Chronic stimulation of ECs by various factors, including pro-inflammatory cytokines and hypoxia, leads to ECs undergoing an imbalance of endothelial homeostasis, which results in endothelial dysfunction and is closely associated with vascular diseases. Emerging studies suggest that endothelial to mesenchymal transition (EndMT) contributes to endothelial dysfunction and plays a key role in the pathogenesis of vascular diseases. EndMT is a process by which ECs lose their markers and show mesenchymal-like morphological changes, and gain mesenchymal cell markers. Despite the efforts to elucidate these molecular mechanisms, the role of EndMT in the pathogenesis of lung disease still requires further investigation. Here, we review the importance of EndMT in the pathogenesis of pulmonary vascular diseases and discuss various signaling pathways and mediators involved in the EndMT process. Furthermore, we will provide insight into the therapeutic potential of targeting EndMT.
Targeting the tumor vasculature is an attractive strategy for cancer treatment. However, the tumor vasculature is heterogeneous, and the mechanisms involved in the neovascularization of tumors are highly complex. Vasculogenic mimicry (VM) refers to the formation of vessel-like structures by tumor cells, which can contribute to tumor neovascularization, and is closely related to metastasis and a poor prognosis. Here, we report a novel function of AXL receptor tyrosine kinase (AXL) in the regulation of VM formation in breast cancer cells. MDA-MB-231 cells exhibited VM formation on Matrigel cultures, whereas MCF-7 cells did not. Moreover, AXL expression was positively correlated with VM formation. Pharmacological inhibition or AXL knockdown strongly suppressed VM formation in MDA-MB-231 cells, whereas the overexpression of AXL in MCF-7 cells promoted VM formation. In addition, AXL knockdown regulated epithelial–mesenchymal transition (EMT) features, increasing cell invasion and migration in MDA-MB-231 cells. Finally, the overexpression of microRNA-34a (miR-34a), which is a well-described EMT-inhibiting miRNA and targets AXL, inhibited VM formation, migration, and invasion in MDA-MB 231 cells. These results identify a miR-34a–AXL axis that is critical for the regulation of VM formation and may serve as a therapeutic target to inhibit tumor neovascularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.