Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-μm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics.
An unusually intense African dust event affected a large area of the western Atlantic and eastern Caribbean in early April 2010. Measurements made east of Barbados from the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter research aircraft are used to characterize particle size distributions; vertical distributions of aerosols, temperature, and moisture; and processes leading to the observed stratification in the boundary layer. The vertical profiles of various aerosol characterizations were similar on both days and show three layers with distinct aerosol and thermodynamic characteristics: the Saharan Air Layer (SAL; ~2.2 km ± 500 m), a subcloud layer (SCL; surface to ~500 m), and an intermediate layer extending between them. The SAL and SCL display well‐mixed aerosol and thermodynamic characteristics; but the most significant horizontal and vertical variations in aerosols and thermodynamics occur in the intermediate layer. The aerosol variability observed in the intermediate layer is likely associated with modification by shallow cumulus convection occurring sometime in the prior history of the air mass as it is advected across the Atlantic. A comparison of the thermodynamic structure observed in the event from its origin over Africa with that when it reached Barbados indicates that the lower part of the SAL was moistened by surface fluxes as the air mass was advected across the Atlantic. Mixing diagrams using aerosol concentrations and water vapor mixing ratios as conserved parameters provide insight into the vertical transports and mixing processes that may explain the observed aerosol and thermodynamic variability in each layer.
Abstract.To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 µm diameter salt particles (salt powder) were released from an aircraft while flying near the cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30-60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 µm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h −1 , and the liquid water path decreased from about 52 to 43 g m −2 . Strong radar returns associated with drizzle were observed on the post-seeding cloud-base levelleg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10 −2 to 10 −4 cm −3 resulted in a four-fold increase in the cloud-base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.
Abstract. Precipitation tends to decrease as aerosol concentration increases in warm marine boundary layer clouds at fixed liquid water path (LWP). The quantitative nature of this relationship is captured using the precipitation susceptibility (S o ) metric. Previously published works disagree on the qualitative behavior of S o in marine low clouds: S o decreases monotonically with increasing LWP or cloud depth (H ) in stratocumulus clouds (Sc), while it increases and then decreases in shallow cumulus clouds (Cu). This study uses airborne measurements from four field campaigns on Cu and Sc with similar instrument packages and flight maneuvers to examine if and why S o behavior varies as a function of cloud type. The findings show that S o increases with H and then decreases in both Sc and Cu. Possible reasons for why these results differ from those in previous studies of Sc are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.