We present TriviaQA, a challenging reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K questionanswer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. We show that, in comparison to other recently introduced large-scale datasets, TriviaQA (1) has relatively complex, compositional questions, (2) has considerable syntactic and lexical variability between questions and corresponding answer-evidence sentences, and (3) requires more cross sentence reasoning to find answers. We also present two baseline algorithms: a featurebased classifier and a state-of-the-art neural network, that performs well on SQuAD reading comprehension. Neither approach comes close to human performance (23% and 40% vs. 80%), suggesting that TriviaQA is a challenging testbed that is worth significant future study. 1
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-ofthe-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at http://quac.ai.
We show that relation extraction can be reduced to answering simple reading comprehension questions, by associating one or more natural-language questions with each relation slot. This reduction has several advantages: we can (1) learn relationextraction models by extending recent neural reading-comprehension techniques, (2) build very large training sets for those models by combining relation-specific crowd-sourced questions with distant supervision, and even (3) do zero-shot learning by extracting new relation types that are only specified at test-time, for which we have no labeled training examples. Experiments on a Wikipedia slot-filling task demonstrate that the approach can generalize to new questions for known relation types with high accuracy, and that zero-shot generalization to unseen relation types is possible, at lower accuracy levels, setting the bar for future work on this task.
We present an analytic study on the language of news media in the context of political fact-checking and fake news detection. We compare the language of real news with that of satire, hoaxes, and propaganda to find linguistic characteristics of untrustworthy text. To probe the feasibility of automatic political fact-checking, we also present a case study based on PolitiFact.com using their factuality judgments on a 6-point scale. Experiments show that while media fact-checking remains to be an open research question, stylistic cues can help determine the truthfulness of text.
We introduce a new entity typing task: given a sentence with an entity mention, the goal is to predict a set of free-form phrases (e.g. skyscraper, songwriter, or criminal) that describe appropriate types for the target entity. This formulation allows us to use a new type of distant supervision at large scale: head words, which indicate the type of the noun phrases they appear in. We show that these ultra-fine types can be crowd-sourced, and introduce new evaluation sets that are much more diverse and fine-grained than existing benchmarks. We present a model that can predict open types, and is trained using a multitask objective that pools our new head-word supervision with prior supervision from entity linking. Experimental results demonstrate that our model is effective in predicting entity types at varying granularity; it achieves state of the art performance on an existing fine-grained entity typing benchmark, and sets baselines for our newly-introduced datasets. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.