Microbial utilization of chitin, a potential renewable biomass feedstock, is being pursued as a means of developing novel consolidated bioprocessing for the production of chemicals. Serratia marcescens is a gram-negative bacterium that is known for its chitinolytic capability and as a native 2,3-butanediol producer. In S. marcescens, ChiR has been suggested to be a positive regulator of chitinase production. In this study, we aim to understand the effect of ChiR in regulating nine chitinase-related genes in S. marcescens Db11 and demonstrate manipulation of chiR as a useful and efficient genetic target to enhance chitin utilization. First, a chiR overexpression (chiROE) strain and a chiR deletion (ΔchiR) strain were generated and characterized in terms of cellular growth, chitinase activity, and total secreted protein. Compared to the wild-type Db11 strain, the S. marcescens chiROE strain showed an increase in chitinase activity (2.14- to 6.31-fold increase). Increased transcriptional expression of chitinase-related genes was measured using real-time PCR, showing 2.12- to 10.93-fold increases. The S. marcescens ΔchiR strain showed decreases in chitinase activity (4.5- to 25-fold decrease), confirming ChiR's role as a positive regulator of chitinase expression. Finally, chiR overexpression was investigated as a means of increasing biochemical production (2,3-butanediol) from crystal chitin. The chiROE strain produced 1.13 ± 0.08 g/L 2,3-butanediol from 2% crystal chitin, a 2.83-fold improvement from the wild-type strain, indicating ChiR is an important and useful genetic engineering target for enhancing chitin utilization in S. marcescens.
Thermostable esterases have potential applications in various biotechnology industries because of their resistance to high temperature and organic solvents. In a previous study, we isolated an esterase from Archaeoglobus fulgidus DSM 4304 (Est-AF), which showed high thermostability but low enantioselectivity toward (S)-ketoprofen ethyl ester. (R)-ketoprofenor (S)-ketoprofenis produced by esterase hydrolysis of the ester bond of (R,S)-ketoprofen ethyl ester and (S)-ketoprofen has better pharmaceutical activity and lower side effects than (R)-ketoprofen. Therefore, we have generated mutants of Est-AF that retained high thermostability whilst improving enantioselectivity. A library of Est-AF mutants was created by error-prone polymerase chain reaction, and mutants with improved enantioselectivity were isolated by site-saturation mutagenesis. The regions of Est-AF containing amino acid mutations were analyzed by homology modeling of its three-dimensional structure, and structure-based explanations for the changes in enantioselectivity are proposed. Finally, we isolated two mutants showing improved enantioselectivity over Est-AF (ee% = -16.2 ± 0.2 and E = 0.7 ± 0.0): V138G (ee% = 35.9 ± 1.0 and E = 3.0 ± 0.1) and V138G/L200R (ee% = 89.2 ± 0.2 and E = 19.5 ± 0.5). We also investigated various characteristics of these mutants and found that the mutants showed similar thermostability and resistance to additives or organic solvents to Est-AF, without a significant trade-off between activity and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.