Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
␣-Synuclein is a key protein in Parkinson's disease (PD) because it accumulates as fibrillar aggregates in pathologic hallmark features in affected brain regions, most notably in nigral dopaminergic neurons. Intraneuronal levels of this protein appear critical in mediating its toxicity, because multiplication of its gene locus leads to autosomal dominant PD, and transgenic animal models overexpressing human ␣-synuclein manifest impaired function or decreased survival of dopaminergic neurons. Here, we show that microRNA-7 (miR-7), which is expressed mainly in neurons, represses ␣-synuclein protein levels through the 3 -untranslated region (UTR) of ␣-synuclein mRNA. Importantly, miR-7-induced down-regulation of ␣-synuclein protects cells against oxidative stress. Further, in the MPTP-induced neurotoxin model of PD in cultured cells and in mice, miR-7 expression decreases, possibly contributing to increased ␣-synuclein expression. These findings provide a mechanism by which ␣-synuclein levels are regulated in neurons, have implications for the pathogenesis of PD, and suggest miR-7 as a therapeutic target for PD and other ␣-synucleinopathies.Parkinson's disease ͉ neuroprotection ͉ MPTP model ͉ microRNA P arkinson's disease (PD) is a common neurodegenerative disorder that affects 1% of the population over 65. It is characterized by disabling motor abnormalities including tremor, slow movements, rigidity, and poor balance. These impairments stem from the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Eventually, large percentages of patients develop dementia and hallucinations when the pathology involves other brain regions as well. Although the majority of Parkinson cases appear to be sporadic, the disorder runs in families in Ϸ15-20% of the cases. To date, 5 distinct genes have been identified to cause PD including ␣-synuclein, parkin, dj-1, pink1, and lrrk2 (1). Understanding how mutations in these genes cause neurodegeneration is crucial in the development of treatments that might slow or stop the disease progression.
Investigations into the cellular and molecular biology of genes that cause inherited forms of Parkinson's disease, as well as the downstream pathways that they trigger, shed considerable light on our understanding the fundamental determinants of life and death in dopaminergic neurons. Homozygous deletion or missense mutation in DJ-1 results in autosomal recessively inherited Parkinson's disease, suggesting that wild-type DJ-1 has a favorable role in maintaining these neurons. Here, we show that DJ-1 protects against oxidative stress-induced cell death, but that its relatively modest ability to quench reactive oxygen species is insufficient to account for its more robust cytoprotective effect. To elucidate the mechanism of this cell-preserving function, we have screened out the death protein Daxx as a DJ-1-interacting partner. We demonstrate that wild-type DJ-1 sequesters Daxx in the nucleus, prevents it from gaining access to the cytoplasm, from binding to and activating its effector kinase apoptosis signal-regulating kinase 1, and therefore, from triggering the ensuing death pathway. All these steps are impaired by the disease-causing L166P mutant isoform of DJ-1. These findings suggest that the regulated sequestration of Daxx in the nucleus and keeping apoptosis signalregulating kinase 1 activation in check is a critical mechanism by which DJ-1 exerts its cytoprotective function.apoptosis ͉ Parkinson's disease ͉ neuroprotection ͉ neurodegeneration ͉ oxidative stress
Lewy bodies (LBs), which are the hallmark pathologic features of Parkinson's disease and of dementia with LBs, have several morphologic and molecular similarities to aggresomes. Whether such cytoplasmic inclusions contribute to neuronal death or protect cells from the toxic effects of misfolded proteins remains controversial. In this report, the role of aggresomes in cell viability was addressed in the context of over-expressing ␣-synuclein and its interacting partner synphilin-1 using engineered 293T cells. Inhibition of proteasome activity elicited the formation of juxtanuclear aggregates with characteristics of aggresomes including immunoreactivity for vimentin, ␥-tubulin, ubiquitin, proteasome subunit, and hsp70. As expected from the properties of aggresomes, the microtubule disrupting agents, vinblastin and nocodazole, markedly prevented the formation of these inclusions. Similar to LBs, the phosphorylated form of ␣-synuclein co-localized in these synphilin-1-containing aggresomes. Although the caspase inhibitor z-VAD-fmk significantly reduced the number of apoptotic cells, it had no impact on the percentage of aggresome-positive cells. Finally, quantitative analysis revealed aggresomes in 60% of nonapoptotic cells but only in 10% of apoptotic cells. Additionally, ␣-synuclein-induced apoptosis was not coupled with increased prevalence of aggresomebearing cells. Taken together, these observations indicate a disconnection between aggresome formation and apoptosis, and support a protective role for these inclusions from the toxicity associated with the combined over-expression of ␣-synuclein and synphilin-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.