Touchscreen gestures are attracting research attention as an authentication method. While studies have showcased their usability, it has proven more complex to determine, let alone enhance, their security. Problems stem both from the small scale of current data sets and the fact that gestures are matched imprecisely -by a distance metric. This makes it challenging to assess entropy with traditional algorithms. To address these problems, we captured a large set of gesture passwords (N=2594) from crowd workers, and developed a security assessment framework that can calculate partial guessing entropy estimates, and generate dictionaries that crack 23.13% or more gestures in online attacks (within 20 guesses). To improve the entropy of gesture passwords, we designed novel blacklist and lexical policies to, respectively, restrict and inspire gesture creation. We close by validating both our security assessment framework and policies in a new crowd-sourced study (N=4000). Our blacklists increase entropy and resistance to dictionary based guessing attacks.
Emotions are an intrinsic part of the social media user experience that can evoke negative behaviors such as cyberbullying and trolling. Detecting the emotions of social media users may enable responding to and mitigating these problems. Prior work suggests this may be achievable on smartphones: emotions can be detected via built-in sensors during prolonged input tasks. We extend these ideas to a social media context featuring sparse input interleaved with more passive browsing and media consumption activities. To achieve this, we present two studies. In the first, we elicit participant's emotions using images and videos and capture sensor data from a mobile device, including data from a novel passive sensor: its built-in eye-tracker. Using this data, we construct machine learning models that predict self-reported binary affect, achieving 93.20% peak accuracy. A follow-up study extends these results to a more ecologically valid scenario in which participants browse their social media feeds. The study yields high accuracies for both self-reported binary valence (94.16%) and arousal (92.28%). We present a discussion of the sensors, features and study design choices that contribute to this high performance and that future designers and researchers can use to create effective and accurate smartphone-based affect detection systems.
PIN and pattern lock are difficult to accurately enter on small watch screens, and are vulnerable against guessing attacks. To address these problems, this paper proposes a novel implicit biometric scheme based on through-wrist acoustic responses. A cue signal is played on a surface transducer mounted on the dorsal wrist and the acoustic response recorded by a contact microphone on the volar wrist. We build classifiers using these recordings for each of three simple hand poses (relax, fist and open), and use an ensemble approach to make final authentication decisions. In an initial single session study (N=25), we achieve an Equal Error Rate (EER) of 0.01%, substantially outperforming prior on-wrist biometric solutions. A subsequent five recall-session study (N=20) shows reduced performance with 5.06% EER. We attribute this to increased variability in how participants perform hand poses over time. However, after retraining classifiers performance improved substantially, ultimately achieving 0.79% EER. We observed most variability with the relax pose. Consequently, we achieve the most reliable multi-session performance by combining the fist and open poses: 0.51% EER. Further studies elaborate on these basic results. A usability evaluation reveals users experience low workload as well as reporting high SUS scores and fluctuating levels of perceived exertion: moderate during initial enrollment dropping to slight during authentication. A final study examining performance in various poses and in the presence of noise demonstrates the system is robust to such disturbances and likely to work well in wide range of real-world contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.