This paper presents and discusses the results obtained from a parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. The main purpose of this work is to analyze the influence of the variables that affect the violation of constraints, chiefly the values of the Baumgarte parameters, the integration method, the time step, and the quality of the initial conditions for the positions. In the sequel of this process, the formulation of the rigid multibody systems is reviewed. The generalized Cartesian coordinates are selected as the variables to describe the bodies’ degrees of freedom. The formulation of the equations of motion uses the Newton–Euler approach, augmented with the constraint equations that lead to a set of differential algebraic equations. Furthermore, the main issues related to the stabilization of the violation of constraints based on the Baumgarte approach are revised. Special attention is also given to some techniques that help in the selection process of the values of the Baumgarte parameters, namely, those based on the Taylor’s series and the Laplace transform technique. Finally, a slider-crank mechanism with eccentricity is considered as an example of application in order to illustrate how the violation of constraints can be affected by different factors.
In this work a comprehensive methodology for dynamic modeling and analysis of planar multibody systems with lubricated revolute joints is presented. In general, this type of mechanical systems includes journal-bearings in which the load varies in both magnitude and direction. The fundamental issues associated with the theory of lubrication for dynamically loaded journal-bearings are revisited that allow for the evaluation of the Reynolds' equation for dynamic regime. This approach permits the derivation of the suitable hydrodynamic force laws that are embedded into the dynamics of multibody systems formulation. In this work, three different hydrodynamic force models are considered, namely the Pinkus and Sternlicht approach for long journalbearings and the Frêne et al. models for both long and short journal-bearings. Results for a planar slider-crank mechanism with a lubricated revolute joint between the connecting-rod and slider are presented and utilized to discuss the assumptions and procedures adopted throughout the present study. Different test scenarios are taken into account with the purpose of performing a comparative study for quantifying the influence of the clearance size, lubricant viscosity, input crank speed and hydrodynamic force model on the dynamic response of multibody systems with lubricated revolute joints. From the global results obtained from computational simulations, it can be concluded that the clearance size, the lubricant viscosity and the operating conditions play a key role in predicting the dynamic behavior of multibody systems.
The effect of high intensity ultrasound on the degassing of AlSi9Cu3 alloy using the novel MMM (Multi-frequency Multimode Modulated) technology was studied. Different ultrasonic parameters (power and frequency), melt temperature and processing times were tested and their influence on the degassing efficiency evaluated. RPT (Reduced Pressure Test) was used to evaluate the hydrogen content in the alloys and the samples porosity level and density. For the experimental conditions used in this research, it was found that ultrasonic frequency has no influence on the hydrogen removal rate that, in turn, strongly depends on the ultrasonic power, the processing time and the melt temperature. The experimental results suggest that the MMM ultrasonic technology is an important improvement to the fixed-frequency ultrasonic systems by significantly decreasing the processing time to achieve a quasi-equilibrium hydrogen concentration in aluminium melts.
This paper presents and discusses the results obtained from a parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. The main purpose of this work is to analyze the influence of the variables that affect the violation of constraints, chiefly the values of the Baumgarte parameters, the integration method, the time step and the quality of the initial conditions for the positions. In the sequel of this process the formulation of the rigid multibody systems is reviewed. The generalized Cartesian coordinates are selected as the variables to describe the bodies’ degrees of freedom. The formulation of the equations of motion uses the Newton-Euler approach that is augmented with the constraint equations that lead to a set of differential algebraic equations. Furthermore, the main issues related to the stabilization of the violation of constraints based on the Baumgarte approach are revised. Special attention is also given to some techniques that help in the selection process of the values of the Baumgarte parameters, namely those based on the Taylor’s series and Laplace transform technique. Finally, a slider crank mechanism with eccentricity is considered as an example of application in order to illustrated how the violation of constraints can be affected by different factors such as the Baumgarte parameters, integrator, time step and initial guesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.