Clonal dissemination of multidrug-resistant Pseudomonas aeruginosa (MDRPA) is a major concern worldwide. The aim of this study was to explore the mechanisms leading to the carbapenem resistance of an MDRPA clone. Isolates were obtained from a surgical wound, sputum, urine and a blood culture. Pulsed-field gel electrophoresis (PFGE) showed high genomic homogeneity of these isolates and confirmed the circulation of an endemic clone belonging to serotype O4. Outer membrane protein (OMP) bands were visualized by SDS-PAGE, meropenem accumulation was measured in a bioassay and integrons were detected by PCR. Efflux pumps were studied for several antimicrobial agents and synergic combinations thereof in the presence or absence of both carbonyl cyanide m-chlorophenylhydrazone (CCCP) and Phe-Arg-bnaphthylamide (PAbN) at final concentrations of 10 and 40 mg l "1 , respectively. On OMP electrophoretic profiles, MDRPA showed a reduction of outer membrane porin D (OprD) and PCR demonstrated the presence of a class 1 integron with a cassette encoding aminoglycoside adenyltransferase B (aadB). Meropenem accumulation was slightly higher in bacilli than in the filamentous cells that formed in the presence of antibiotics. Overexpression of the efflux pump MexAB-OprM and a functional MexXY-OprM were detected in all isolates.
Cystic fibrosis (CF) is the main genetic cause of death among the Caucasian population. The disease is characterized by abnormal fluid and electrolyte mobility across secretory epithelia. The first manifestations occur within hours of birth (meconium ileus), later extending to other organs, generally affecting the respiratory tract. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encodes a cyclic adenosine monophosphate (cAMP)-dependent, phosphorylation-regulated chloride channel required for transport of chloride and other ions through cell membranes. There are more than 2,000 mutations described in the CFTR gene, but one of them, phenylalanine residue at amino acid position 508 (p.F508del), a recessive allele, is responsible for the vast majority of CF cases worldwide. Here, we present the results of the application of genome-editing techniques to the restoration of CFTR activity in p.F508del patient-derived induced pluripotent stem cells (iPSCs). Gene-edited iPSCs were subsequently used to produce intestinal organoids on which the physiological activity of the restored gene was tested in forskolin-induced swelling tests. The seamless restoration of the p.F508del mutation resulted in normal expression of the mature CFTR glycoprotein, full recovery of CFTR activity, and a normal response of the repaired organoids to treatment with two approved CF therapies: VX-770 and VX-809.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.