During October‐November 1986 the baroclinic circulation of the central and western Gulf of Mexico was dominated by an anticyclonic ring that was being bisected by two north and south flanking cyclonic rings. The baroclinic circulation revealed a well‐defined cyclonic‐anticyclonic‐cyclonic triad system. The anticyclone's collision against the western gulf continental slope at 22.5°N, 97°W originated the north and south flanking cyclonic rings. The weakening of the anticyclone's relative vorticity, during the collision, was compensated by along‐shelf north (26 cm s−1) and south (58 cm s−1) jet currents and by the anticyclone's flanking water mass's gain of cyclonic vorticity from lateral shear contributed by east (56 cm s−1) and west (42 cm s−1) current jets with individual mass transports of ∼18 Sv. Within the 0–1000 and 0–500 dbar layers and across 96°W the magnitudes of the colliding westward transports were 17.80 and 8.59 Sv, respectively. These corresponding transports were 85 and 94% balanced by along‐shelf jet currents north and south of the anticyclone's collision zone. This indicates that only minor amounts (<15%) of the anticyclone's colliding westward transports might have flowed into the western gulf's continental shelf water mass or else they sank into deeper water along the continental slope during the anticyclone's collision event. The resultant effect of the coupled interaction between the anticyclone and the cyclonic pair was the surging of the water mass in the cyclones and its sinking in the anticyclone. This mechanism controlled the magnitude, direction, location of vertical advection, and transfer of kinetic energy from the upper to the deeper water layers. Our vertical transport estimates through the 1000‐m‐depth surface revealed a net vertical descending transport of 0.4 Sv for the ring triad system. This mass flux occurred primordially within the south central gulf region and most likely constituted a principal mechanism that propelled the gulf's deep horizontal circulation. The volume renewal time is ∼5 years for the ring triad system within 0–1000 dbar. The volume renewal time for the gulf's deep water layer (2000–3000 dbar), estimated as a function of its horizontal outflowing mass flux (1.96 Sv), is of the same order of magnitude and reveals that the deeper layer of the Gulf of Mexico is as well ventilated as its upper layer (0–1000 dbar). The ring triad's surface kinematic properties were derived from the sea surface baroclinic circulation field referenced to 500 dbar. Within this layer, individual ring geometries were conserved. Maximum tangential ring velocities were 60 and 58 cm s−1, for the north and south cyclones respectively, and 30 cm s−1 for the anticyclone. The corresponding periods of revolution were 16, 19, and 26 days, and vertical velocities calculated at the rings' peripheries, where maximum horizontal divergence was encountered, were 1.5, 1.0, and −1.0 m d−1.
This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical techniques and the geographic information system ArcGIS View 9.0 were used. Further, a panel of fifteen international experts in coastal management issues was consulted to establish and validate the CMI. Results led to three index components based on 22 indicators. CMI was applied in the state of Tamaulipas, Mexico and in Santiago de Cuba province, Cuba. According to CMI estimates, the risk levels associated with SLR for human settlements analyzed in Mexico and Cuba were 5.3% and 11.0%, respectively. The most severely affected communities will require resettlement. Meanwhile, the CMI determined that 15.8% of the Mexican territory studied will be able to withstand the effects of SLR through the management of engineering works that will protect human settlements. The CMI determined that 79.0%, in the case of Tamaulipas, as well as 89.0% of the Cuban territory, will not require new policies or guidelines to promote conservation and protection of coastal natural resources. Lastly, the method used allowed for creation of a CMI stoplight map useful to coastal decision-makers to adopt sound management actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.