A single-faced superhydrophobic lyocell fabric maintaining its inherent high moisture absorbing bulk property was produced by oxygen plasma-based nanostructuring and a subsequent coating with a lowsurface-energy material. After 5 minutes of oxygen plasma etching, followed by 30 seconds of a plasma polymerized hexamethyldisiloxane coating, the treated surface of lyocell turned into a superhydrophobic surface with a static contact angle greater than 160 and a sliding angle less than 2 ; however, the backside was hydrophilic, untreated lyocell fabric. As a result of oxygen plasma etching, dual hierarchical roughness was formed on the lyocell fabric as nano scale pillars or hairs were added onto the lyocell fabric surface with micro scale roughness. Extremely opposite wetting behavior was observed, when a water droplet was deposited on the face and backside of the plasma-treated lyocell fabric. A water droplet was immediately absorbed and spread out on the untreated backside, while it rolled off the treated surface, demonstrating a bouncing effect.
Functional glass surfaces with the properties of superhydrophobicity/or superhydrohydrophilicity, anti-condensation or low reflectance require nano- or micro-scale roughness, which is difficult to fabricate directly on glass surfaces. Here, we report a novel non-lithographic method for the fabrication of nanostructures on glass; this method introduces a sacrificial SiO2 layer for anisotropic plasma etching. The first step was to form nanopillars on SiO2 layer-coated glass by using preferential CF4 plasma etching. With continuous plasma etching, the SiO2 pillars become etch-resistant masks on the glass; thus, the glass regions covered by the SiO2 pillars are etched slowly, and the regions with no SiO2 pillars are etched rapidly, resulting in nanopatterned glass. The glass surface that is etched with CF4 plasma becomes superhydrophilic because of its high surface energy, as well as its nano-scale roughness and high aspect ratio. Upon applying a subsequent hydrophobic coating to the nanostructured glass, a superhydrophobic surface was achieved. The light transmission of the glass was relatively unaffected by the nanostructures, whereas the reflectance was significantly reduced by the increase in nanopattern roughness on the glass.
A novel method to fabricate ultra-low reflective Si surfaces with nanoscale hierarchical structures is developed by the combination of AlOOH or boehmite nanoflakes nested on plasma-etched Si nanopillars. Using CF4 plasma etching, Si surfaces are nanostructured with pillar-like structures by selective etching with self-masking by fluorocarbon residues. AlOOH nanoflakes are formed by Al thin film coating with various thicknesses and subsequent immersion in boiling water, which induces the formation of nanoscale flakes through the hydrolysis reaction. AlOOH nanoflakes are formed on Si nanopillared surfaces for hierarchical structures, which are coated with a low-surface-energy material, resulting in a higher water wetting angle of over 150° and a very low contact angle hysteresis of less than 5°, and implying a self-cleaning surface. Reflectance reduced to 5.18% on average on hierarchical nanostructures in comparison to 9.63% on the Si nanopillar surfaces only. We found that Si nanopillars reduced reflection for wavelengths ranging from 200 to 1200 nm while AlOOH nanoflakes reduced reflection for wavelengths longer than 600 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.