Cardiac arrhythmias can cause sudden cardiac death (SCD) and add to the current heart failure (HF) health crisis. Nevertheless, the pathological processes underlying arrhythmias are unclear. Arrhythmic conditions are associated with systemic and cardiac oxidative stress caused by reactive oxygen species (ROS). In excitable cardiac cells, ROS regulate both cellular metabolism and ion homeostasis. Increasing evidence suggests that elevated cellular ROS can cause alterations of the cardiac sodium channel (Nav1.5), abnormal Ca2+ handling, changes of mitochondrial function, and gap junction remodeling, leading to arrhythmogenesis. This review summarizes our knowledge of the mechanisms by which ROS may cause arrhythmias and discusses potential therapeutic strategies to prevent arrhythmias by targeting ROS and its consequences.
Rationale Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (INa), reducing the net cytosolic Ca2+ efflux. Objective Oxidative stress in the DOCA-salt model may increase late INa resulting in diastolic dysfunction amenable to treatment with ranolazine. Methods and Results Echocardiography detected evidence of diastolic dysfunction in hypertensive mice that improved after treatment with ranolazine (E/E′, sham 31.9 ± 2.8, sham+ranolazine 30.2 ± 1.9, DOCA-salt 41.8 ± 2.6, and DOCA-salt+ranolazine 31.9 ± 2.6, p = 0.018). The end diastolic pressure volume relationship slope was elevated in DOCA-salt mice, improving to sham levels with treatment (sham 0.16 ± 0.01 vs. sham+ranolazine 0.18 ± 0.01 vs. DOCA-salt 0.23 ± 0.2 vs. DOCA-salt+ranolazine 0.17 ± 0.01 mm Hg/L, p < 0.005). DOCA-salt myocytes demonstrated impaired relaxation, τ, improving with ranolazine (DOCA-salt 0.18 ± 0.02, DOCA-salt + ranolazine 0.13 ± 0.01, Sham 0.11 ± 0.01, Sham + ranolazine 0.09 ± 0.02 s, p = 0.0004). Neither late INa nor the Ca2+ transients were different from sham myocytes. Detergent extracted fiber bundles from DOCA-salt hearts demonstrated increased myofilament response to Ca2+ with glutathionylation of myosin binding protein C. Treatment with ranolazine ameliorated the Ca2+ response and cross-bridge kinetics. Conclusions Therefore, diastolic dysfunction could be reversed by ranolazine, likely resulting from a direct effect on myofilaments, indicating that cardiac oxidative stress may mediate diastolic dysfunction through altering the contractile apparatus.
Background Previously, we showed a mouse model (ACE8/8) of cardiac renin-angiotensin system (RAS) activation has a high rate of spontaneous ventricular tachycardia (VT) and sudden cardiac death (SCD) secondary to a reduction in connexin43 (Cx43) level. Angiotensin-II activation increases reactive oxygen species (ROS) production, and ACE8/8 mice show increased cardiac ROS. We sought to determine the source of ROS and if ROS played a role in the arrhythmogenesis. Methods and Results Wild-type and ACE8/8 mice with and without two weeks of treatment with L-NIO (nitric oxide synthase inhibitor), sepiapterin (precursor of tetrahydrobiopterin), MitoTEMPO (mitochondria-targeted antioxidant), TEMPOL (a general antioxidant), apocynin (NADPH oxidase inhibitor), allopurinol (xanthine oxidase inhibitor), and ACE8/8 crossed with P67 dominant negative mice to inhibit the NADPH oxidase were studied. Western blotting, detection of mitochondrial ROS by MitoSOX Red, electron microscopy, immunohistochemistry, fluorescent dye diffusion technique for functional assessment of Cx43, telemetry monitoring, and in-vivo electrophysiology studies were performed. Treatment with MitoTEMPO reduced SCD in ACE8/8 mice (from 74% to 18%, P<0.005), decreased spontaneous ventricular premature beats, decreased VT inducibility (from 90% to 17%, P<0.05), diminished elevated mitochondrial ROS to the control level, prevented structural damage to mitochondria, resulted in 2.6 fold increase in Cx43 level at the gap junctions, and corrected gap junction conduction. None of the other antioxidant therapies prevented VT and SCD in ACE8/8 mice. Conclusions Mitochondrial oxidative stress plays a central role in angiotensin II-induced gap junction remodeling and arrhythmia. Mitochondria-targeted antioxidants may be effective antiarrhythmic drugs in cases of RAS activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.