receptors and potently antagonized R(ϩ)-2-dipropylamino-7-hydroxy-1,2,3,4-tetra-hydronaphtalene HBr (7-OH-DPAT)-induced suppression of cAMP formation (pK b 9.57). In these functional assays, cariprazine showed similar (D 2 ) or higher (D 3 ) antagonist-partial agonist affinity and greater (3-to 10-fold) D 3 versus D 2 selectivity compared with aripiprazole. In in vivo turnover and biosynthesis experiments, cariprazine demonstrated D 2 -related partial agonist and antagonist properties, depending on actual dopaminergic tone. The antagonist-partial agonist properties of cariprazine at D 3 and D 2 receptors, with very high and preferential affinity to D 3 receptors, make it a candidate antipsychotic with a unique pharmacological profile among known antipsychotics. Dopamine D 3 receptors, cloned in the beginning of the 1990s (Sokoloff et al., 1990), are most abundant in the mesolimbic regions (i.e., nucleus accumbens, island of Calleja) where dysregulation of neurotransmission is thought to be associated with psychosis. The discovery that most antipsychotics, in addition to binding to D 2 receptors, display reasonably high affinity for D 3 receptors, led to the assumption that these receptors may also be responsible for antipsychotic efficacy (Sokoloff et al., 1995). Unfortunately, the selective D 3Article, publication date, and citation information can be found at
A sequential docking methodology was applied to computationally predict starting points for fragment linking using the human dopamine D3 receptor crystal structure and a human dopamine D2 receptor homology model. Two focused fragment libraries were docked in the primary and secondary binding sites, and best fragment combinations were enumerated. Similar top scoring fragments were found for the primary site, while secondary site fragments were predicted to convey selectivity. Three linked compounds were synthesized that had 9-, 39-, and 55-fold selectivity in favor of D3 and the subtype selectivity of the compounds was assessed on a structural basis.
RG-15 (trans-N-[4-[2-[4-(3-cyano-5-trifluoromethyl-phenyl)-piperazine-1-yl]-ethyl]-cyclohexyl]-3-pyridinesulfonic amide dihydrochloride) displayed subnanomolar affinity to human and rat dopamine D3 receptors (pKi 10.49 and 9.42, respectively) and nanomolar affinity to human and rat D2 receptors (pKi 8.23 and 7.62, respectively). No apparent interactions were found with the other 44 receptors and four channel sites tested in this study. RG-15 inhibited dopamine-stimulated [35S]GTPgammaS binding in membranes from rat striatum, in murine A9 cells expressing human D2L receptors and in CHO cells expressing human D3 receptors (IC50 values were 21.2, 36.7 and 7.2 nM, respectively). In these tests RG-15 showed the highest affinity toward D3 receptors when compared to amisulpride, haloperidol and SB-277011. RG-15, similar to haloperidol and amisulpride, dose-dependently inhibited in vivo [3H]raclopride binding in mouse striatum, enhanced dopamine turnover and synthesis rate in mouse and rat striatum and olfactory tubercle. SB-277011 did not change [3H]raclopride binding in mouse striatum nor biosynthesis or turnover rates in either region in mice or rats. RG-15 and haloperidol, but not SB-277011, antagonised dopamine synthesis inhibition induced by the D3/D2 full agonist 7-OH-DPAT in GBL-treated mice. RG-15, but not SB-277011, elevated plasma prolactin levels. In vitro receptor binding and functional experiments demonstrated that RG-15 had an antagonist profile on both D3 and D2 receptors. with high selectivity for dopamine D3 receptors over D2 receptors. However, in vivo, its neurochemical actions were similar to those of D2 receptor antagonists. Neurochemical comparison of RG-15 with antagonists having a different affinity and selectivity toward D3 and D2 receptors indicate that D3 receptors have little, if any, role in the control of presynaptic dopamine biosynthesis/release in dopaminergic terminal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.