Multiexponential T 2 relaxation time measurement in the central nervous system shows a component that originates from water trapped between the lipid bilayers of myelin. This myelin water component is of significant interest as it provides a myelin-specific MRI signal of value in assessing myelin changes in cerebral white matter in vivo. In this article, the various acquisition and analysis strategies proposed to date for myelin water imaging are reviewed and research conducted into their validity and clinical applicability is presented. Comparisons between the imaging methods are made with a discussion regarding potential difficulties and model limitations.
Quantitative spinal cord (SC) magnetic resonance imaging (MRI) is fraught with challenges, among which is the lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for the three main 3T MRI vendors: GE, Philips and Siemens. The protocol provides valuable metrics for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area (CSA) computation, multi-echo gradient echo for gray matter CSA, as well as magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. The spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects, as detailed in the companion paper [REF-DATA]. The spine generic protocol is open-access and its latest version can be found at: https://spinalcordmri.org/protocols. The protocol will serve as a valuable starting point for researchers and clinicians implementing new SC imaging initiatives.
Note to the reviewer/editor/publisher: the companion paper is referred to as [REF-DATA]6/52 121 122dealing with cervical myelopathy and MS populations.
Applications of the MethodThe proposed protocol is not geared towards a specific disease and it is suitable for imaging WM pathology (demyelination and Wallerian degeneration via axon/myelin-sensitive 122 https://mssociety.ca/about-ms-research/about-our-research-program/research-we-fund/canadian-prospect ive-cohort-study-to-understand-progression-in-ms-canproco 121 https://www.wingsforlife.com/us/research/imaging-spinal-cord-injury-and-assessing-its-predictive-value-th e-inspired-study-2675/ 9/52
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.