In this work, cyclic Blaschke products for composition operators induced by disc automorphisms are studied. In particular, we obtain interpolating Blaschke products that are cyclic for nonelliptic automorphisms and we obtain a new characterization of Blaschke products that are not finite products of interpolating Blaschke products.
The Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of universal operators in the sense of Rota has been one tool for studying the problem. The best known universal operators have been adjoints of analytic Toeplitz operators or unitarily equivalent to them. We present many examples of Toeplitz operators whose adjoints are universal operators and exhibit some of their common properties. Some ways in which the invariant subspaces of these universal operators interact with operators in their commutants are given. Special attention is given to the closed subalgebra, not always the zero algebra, of compact operators in their commutants. Finally, three questions connecting shift invariant subspaces and invariant subspaces of analytic Toeplitz operators are raised. Positive answers for both of the first two imply the existence of non-trivial invariant subspaces for every bounded operator on separable Hilbert spaces of dimension two or more.
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a non-trivial, quasinilpotent, injective, compact operator with dense range, but unlike other examples, it acts on the Bergman space instead of the Hardy space and this operator is associated with a 'hyperbolic' composition operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.