While selective inhibition is one of the key assets for a small molecule drug, many diseases can only be tackled by simultaneous inhibition of several proteins. An example where achieving selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors. We investigated the possibility to identify novel small molecule ligands with pre-defined binding profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands originating from these calculations were assayed to determine their experimental binding profiles. Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets. Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed our target choice and in silico strategy based on these findings, with a particular emphasis on the hit rates that can be expected from a given target combination. To that end, we supplemented the structure-based docking calculations with bioinformatic considerations of binding pocket sequence and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results provide a multi-faceted picture of how pocket space can determine the success of docking in multi-target drug discovery efforts.
Protein kinases are among the most important drug targets because their dysregulation can cause cancer, inflammatory and degenerative diseases, and many more. Developing selective inhibitors is challenging due to the highly conserved binding sites across the roughly 500 human kinases. Thus, detecting subtle similarities on a structural level can help explain and predict off-targets among the kinase family. Here, we present the kinase-focused, subpocket-enhanced KiSSim fingerprint (Kinase Structural Similarity). The fingerprint builds on the KLIFS pocket definition, composed of 85 residues aligned across all available protein kinase structures, which enables residue-by-residue comparison without a computationally expensive alignment. The residues’ physicochemical and spatial properties are encoded within their structural context including key subpockets at the hinge region, the DFG motif, and the front pocket. Since structure was found to contain information complementary to sequence, we used the fingerprint to calculate all-against-all similarities within the structurally covered kinome. We could identify off-targets that are unexpected if solely considering the sequence-based kinome tree grouping; for example, Erlobinib’s known kinase off-targets SLK and LOK show high similarities to the key target EGFR (TK group), although belonging to the STE group. KiSSim reflects profiling data better or at least as well as other approaches such as KLIFS pocket sequence identity, KLIFS interaction fingerprints (IFPs), or SiteAlign. To rationalize observed (dis)similarities, the fingerprint values can be visualized in 3D by coloring structures with residue and feature resolution. We believe that the KiSSim fingerprint is a valuable addition to the kinase research toolbox to guide off-target and polypharmacology prediction. The method is distributed as an open-source Python package on GitHub and as a conda package: .
Sequencing of SARS-CoV-2 RNA from wastewater samples has emerged as a valuable tool for detecting the presence and relative abundances of SARS-CoV-2 variants in a community. By analyzing the viral genetic material present in wastewater, public health officials can gain early insights into the spread of the virus and inform timely intervention measures. The construction of reference datasets from known SARS-CoV-2 lineages and their mutation profiles has become state-of-the-art for assigning viral lineages and their relative abundances from wastewater sequencing data. However, the selection of reference sequences or mutations directly affects the predictive power. Here, we show the impact of a mutation- and sequence-based reference reconstruction for SARS-CoV-2 abundance estimation. We benchmark three data sets: 1) synthetic 'spike-in' mixtures, 2) German samples from early 2021, mainly comprising Alpha, and 3) samples obtained from wastewater at an international airport in Germany from the end of 2021, including first signals of Omicron. The two approaches differ in sub-lineage detection, with the marker-mutation-based method, in particular, being challenged by the increasing number of mutations and lineages. However, the estimations of both approaches depend on selecting representative references and optimized parameter settings. By performing parameter escalation experiments, we demonstrate the effects of reference size and alternative allele frequency cutoffs for abundance estimation. We show how different parameter settings can lead to different results for our test data sets, and illustrate the effects of virus lineage composition of wastewater samples and references. Here, we compare a mutation- and sequence-based reference construction and assignment for SARS-CoV-2 abundance estimation from wastewater samples. Our study highlights current computational challenges, focusing on the general reference design, which significantly and directly impacts abundance allocations. We illustrate advantages and disadvantages that may be relevant for further developments in the wastewater community and in the context of higher standardization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.