Locomotor behaviors are critical for survival and enable animals to navigate their environment, find food and evade predators. The circuits in the brain and spinal cord that initiate and maintain such different modes of locomotion in vertebrates have been studied in numerous species for over a century. In recent decades, the zebrafish has emerged as one of the main model systems for the study of locomotion, owing to its experimental amenability, and work in zebrafish has revealed numerous new insights into locomotor circuit function. Here, we review the literature that has led to our current understanding of the neural circuits controlling swimming and escape in zebrafish. We highlight recent studies that have enriched our comprehension of key topics, such as the interactions between premotor excitatory interneurons (INs) and motoneurons (MNs), supraspinal and spinal circuits that coordinate escape maneuvers, and developmental changes in overall circuit composition. We also discuss roles for neuromodulators and sensory inputs in modifying the relative strengths of constituent circuit components to provide flexibility in zebrafish behavior, allowing the animal to accommodate changes in the environment. We aim to provide a coherent framework for understanding the circuitry in the brain and spinal cord of zebrafish that allows the animal to flexibly transition between different speeds, and modes, of locomotion.
In many animals, individual legs can either function independently, as in behaviors such as scratching or searching, or be used in coordinated patterns with other legs, as in walking or climbing. While the control of walking has been extensively investigated, the mechanisms mediating the behavioral choice to activate individual legs independently are poorly understood. We examined this issue in stick insects, in which each leg can independently produce a rhythmic searching motor pattern if it doesn't find a foothold [1-4]. We show here that one non-spiking interneuron, I4, controls searching behavior in individual legs. One I4 is present in each hemi-segment of the three thoracic ganglia [5, 6]. Search-inducing sensory input depolarizes I4. I4 activity was necessary and sufficient to initiate and maintain searching movements. When substrate contact was provided, I4 depolarization no longer induced searching. I4 therefore both integrates search-inducing sensory input and is gated out by other sensory input (substrate contact). Searching thus occurs only when it is behaviorally appropriate. I4 depolarization never elicited stepping. These data show that individual, locally activated neurons can mediate the behavioral choice to use individual legs independently. This mechanism may be particularly important in insects' front legs, which can function independently like vertebrate arms and hands [7]. Similar local command mechanisms that selectively activate the pattern generators controlling repeated functional units such as legs or body segments may be present in other systems.
SUMMARYStick insects (Cuniculina impigra) possessing only a single front leg perform untargeted stereotypical cyclic searching movements with that leg when it loses contact with the ground. When encountering an object, the animals grasp it. We hypothesized that removal of the object immediately after contact with the legʼs tibia would result in a change in searching strategy, i.e. searching movements confined to the former location of the object to regain contact. In our experimental setup, searching movements were restricted to upward and downward movements. After removal of the object, searching movements were continued. However, in post-contact searching, two movement parameters were usually changed: (1) average positions of searching movements were shifted towards the former position of the object; and (2) movement amplitudes were considerably smaller and accompanied by a decrease in cycle period. This confinement of searching movements to the location of contact was interpreted as targeting behavior. All parameters regained initial values after approximately 6s. Changes in position and amplitudes were independently controlled. Neither of the changes was under visual control, but rather depended on the presence of the trochanteral hairplate, a sensory organ that measures the coxa-trochanter joint position. Changes in average leg position were linked to changes in the ratio of electrical activity in the levator and depressor trochanteris muscles, which were based on altered activity in both or either one of the muscles. Our data demonstrate a switch in a simple behavior that is under local sensory control and may utilize a form of short-term memory.
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial step toward a better understanding of the development and functionality of neuronal locomotor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.