Since binding sites for melatonin have been found in the hippocampus of several mammals, it has been suggested that the pineal hormone melatonin is able to modulate neuronal functions of hippocampal cells. In order to get more insight into the role of melatonin for the functions of hippocampal cells, the following experiments were performed: male rats, maintained under a 12/12-h light-dark cycle, were sacrificed by decapitation at zeitgeber times (h) ZT2, ZT8, and ZT15 (ZT0 = lights on); for experiment 1, gene expression for melatonin receptors was detected in the hippocampus and in hippocampal subfields by means of the RT-PCR technique; for experiment 2, electrophysiological and pharmacological properties of melatonin receptors heterologously expressed in Xenopus oocytes after injection of mRNA from the hippocampus were analyzed by means of voltage clamp technique; and for experiment 3, effects of melatonin on the spontaneous firing rate of action potentials in the CA1 regions of hippocampal slices were analyzed by means of extracellular recordings. The RT-PCR data revealed that transcripts for both the MT1 and MT2 melatonin receptors are present in the dentate gyrus, CA3, and CA1 regions, and the subiculum of the hippocampus. Injection of mRNA from rat hippocampus into the Xenopus oocytes led to the functional reconstitution of melatonin-sensitive receptors, which activates calcium-dependent chloride inward currents. The melatonin responses were abolished by simultaneous administration of the antagonists 2-phenylmelatonin and luzindole, and were unaffected by the MT2 antagonist 4-phenyl-2-propionamidotetralin. Bath-applied melatonin (1 micromol/l) enhances the firing rate of neurons in the CA1 region. The effect was small in experiments performed at ZT8 (<2 times the initial level) and large in experiments performed at ZT15 (>6 times). The changes of neuronal firing rate induced by melatonin were completely suppressed with simultaneous administration of the melatonin receptor antagonist luzindole (10 micromol/l). The results indicate that melatonin may play an important role in modulating neuronal excitability in the hippocampus.
The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α-lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by þ68.9%, hemoglobin þ4%, and human serum albumin þ2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air-liquid interface induced the aggregation of GCSF by þ94.5%, hemoglobin þ35.5%, and human serum albumin (HSA) þ31.1%.The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid-induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 10 8 s À1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins.
Enveloped virus-like particles (VLPs) are increasingly used as vaccines and immunotherapeutics. Frequently, very time consuming density gradient centrifugation techniques are used for purification of VLPs. However, the progress towards optimized large-scale VLP production increased the demand for fast, cost efficient and scale able purification processes. We developed a chromatographic procedure for purification of HIV-1 gag VLPs produced in CHO cells. The clarified and filtered cell culture supernatant was directly processed on an anion-exchange monolith. The majority of host cell impurities passed through the column, whereas the VLPs were eluted by a linear or step salt gradient; the major fraction of DNA was eluted prior to VLPs and particles in the range of 100-200nm in diameter could be separated into two fractions. The earlier eluted fraction was enriched with extracellular particles associated to exosomes or microvesicles, whereas the late eluting fractions contained the majority of most pure HIV-1 gag VLPs. DNA content in the exosome-containing fraction could not be reduced by Benzonase treatment which indicated that the DNA was encapsulated. Many exosome markers were identified by proteomic analysis in this fraction. We present a laboratory method that could serve as a basis for rapid downstream processing of enveloped VLPs. Up to 2000 doses, each containing 1×10(9) particles, could be processed with a 1mL monolith within 47min. The method compared to density gradient centrifugation has a 220-fold improvement in productivity.
Recently, a species-dependent distribution of melatonin binding sites have been found in lamina I-V and lamina X of the spinal cord. In order to learn more about the function of spinal melatonin receptors, we investigated (i) the gene expression for melatonin receptor subtypes in lumbar and thoracal spinal cord tissue by means of the reverse-transcriptase polymerase chain reaction (RT-PCR) technique, and (ii) the electrophysiological and pharmacological properties of melatonin receptors heterologously expressed in Xenopus oocytes after injection of spinal cord mRNA by means of the voltage clamp technique. Because ample evidence indicates an antinociceptive effect of melatonin, (iii) the role of spinal melatonin receptors for maintaining mechanical and thermal hyperalgesia was studied in a rat model for postoperative pain. The RT-PCR data revealed that transcripts for MT1 and MT2 melatonin receptors are present in the dorsal and ventral horn of lumbar and thoracal spinal cord tissue. Injection of mRNA from lumbar spinal cord tissue into Xenopus oocytes led to the functional reconstitution of melatonin receptors which activate calcium-dependent chloride inward currents. Melatonin responses were abolished by simultaneous administration of the antagonists, 2-phenylmelatonin and luzindole and were unaffected by the MT2 antagonist 4-phenyl-2-propionamidotetralin. Intrathecal administration of different melatonin doses (10-100 nmol) did not inhibit mechanical or thermal hyperalgesia. However, intrathecal application of a low dose of morphine together with melatonin caused a brief antinociceptive effect suggesting an enhanced morphine analgesia by melatonin. In conclusion, the present study demonstrated for the first time the presence of transcripts of MT1 and MT2 receptors located in the dorsal and ventral horn of the spinal cord. Furthermore, spinal melatonin enhanced the antinociceptive effect of morphine indicating that melatonin acts as a neuromodulator in the spinal cord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.