The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 lg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by >90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 lg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 lg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development.
The immunomodulatory drug leflunomide is frequently used for treating polyomavirus-associated nephropathy, yet its antiviral mechanism is unclear. We characterized the effects of the active leflunomide metabolite A771726 (LEF-A) on the polyomavirus BK (BKV) life cycle in human renal tubular epithelial cells. LEF-A at 10 g/ml reduced the extracellular BKV load by 90% (IC 90 ) but with significant host cytostatic effects. BKV genome replication, late protein expression, and virion assembly and release were inhibited with visible disruption of the nuclear replication architecture. Both host cell and antiviral effects were largely reversed by uridine addition, implicating nonspecific pyrimidine depletion as the major anti-BKV mechanism of leflunomide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.