Our data characterize the chromatophore as a photosynthetic entity that is absolutely dependent on its host for growth and survival. Thus, the chromatophores of P. chromatophora are the only known cyanobacterial descendants besides plastids with a significantly reduced genome that confer photosynthesis to their eukaryotic host. Their comparison with plastids and bacterial endosymbionts of invertebrates sheds light on early steps of the integration of a photosynthetic prokaryote into a eukaryotic cell.
The establishment of an endosymbiotic relationship typically seems to be driven through complementation of the host's limited metabolic capabilities by the biochemical versatility of the endosymbiont. The most significant examples of endosymbiosis are represented by the endosymbiotic acquisition of plastids and mitochondria, introducing photosynthesis and respiration to eukaryotes. However, there are numerous other endosymbioses that evolved more recently and repeatedly across the tree of life. Recent advances in genome sequencing technology have led to a better understanding of the physiological basis of many endosymbiotic associations. This review focuses on endosymbionts in protists (unicellular eukaryotes). Selected examples illustrate the incorporation of various new biochemical functions, such as photosynthesis, nitrogen fixation and recycling, and methanogenesis, into protist hosts by prokaryotic endosymbionts. Furthermore, photosynthetic eukaryotic endosymbionts display a great diversity of modes of integration into different protist hosts.In conclusion, endosymbiosis seems to represent a general evolutionary strategy of protists to acquire novel biochemical functions and is thus an important source of genetic innovation.
Plastids, the photosynthetic organelles, originated >1 billion y ago via the endosymbiosis of a cyanobacterium. The resulting proliferation of primary producers fundamentally changed global ecology. Endosymbiotic gene transfer (EGT) from the intracellular cyanobacterium to the nucleus is widely recognized as a critical factor in the evolution of photosynthetic eukaryotes. The contribution of horizontal gene transfers (HGTs) from other bacteria to plastid establishment remains more controversial. A novel perspective on this issue is provided by the amoeba Paulinella chromatophora, which contains photosynthetic organelles (chromatophores) that are only 60-200 million years old. Chromatophore genome reduction entailed the loss of many biosynthetic pathways including those for numerous amino acids and cofactors. How the host cell compensates for these losses remains unknown, because the presence of bacteria in all available P. chromatophora cultures excluded elucidation of the full metabolic capacity and occurrence of HGT in this species. Here we generated a high-quality transcriptome and draft genome assembly from the first bacteria-free P. chromatophora culture to deduce rules that govern organelle integration into cellular metabolism. Our analyses revealed that nuclear and chromatophore gene inventories provide highly complementary functions. At least 229 nuclear genes were acquired via HGT from various bacteria, of which only 25% putatively arose through EGT from the chromatophore genome. Many HGT-derived bacterial genes encode proteins that fill gaps in critical chromatophore pathways/processes. Our results demonstrate a dominant role for HGT in compensating for organelle genome reduction and suggest that phagotrophy may be a major driver of HGT.endosymbiosis | genome evolution | organellogenesis | horizontal gene transfer | coevolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.