Introduction: SARS-CoV-2 (COVID-19) patients who develop acute respiratory distress syndrome (ARDS) can suffer acute lung injury, or even death. Early identification of severe disease is essential in order to control COVID-19 and improve prognosis. Oxidative stress (OS) appears to play an important role in COVID-19 pathogenesis; we therefore conceived a study of the potential discriminative ability of serum biomarkers in patients with ARDS and those with mild to moderate disease (non-ARDS). Method: 60 subjects were enrolled in a single-centre, prospective cohort study of consecutively admitted patients: 29 ARDS/31 non-ARDS. Blood samples were drawn and marker levels analysed by spectrophotometry and immunoassay techniques. Results: C-reactive protein (CRP), lactate dehydrogenase (LDH), and ferritin were significantly higher in ARDS versus non-ARDS cases at hospital admission. Leukocytes, LDH, ferritin, interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) were also significantly elevated in ARDS compared to non-ARDS patients during the hospital stay. Total thiol (TT) was found to be significantly lower in ARDS. Conversely, D-dimer, matrix metalloproteinase-9 (MMP-9) and advanced glycosylated end products (AGE) were elevated. Leukocytes, LDH, CRP, ferritin and IL-6 were found to be significantly higher in non-survivors. However, lymphocyte, tumour necrosis factor beta (TGF-β), and TT were lower. Conclusion: In summary, our results support the potential value of TT, ferritin and LDH as prognostic biomarkers for ARDS development in COVID-19 patients, distinguishing non-ARDS from ARDS (AUCs = 0.92; 0.91; 0.89) in a fast and cost-effective manner. These oxidative/inflammatory parameters appear to play an important role in COVID-19 monitoring and can be used in the clinical management of patients.
Objectives: To describe the frequency of COVID-19 and the effect of vaccination in patients with interstitial lung disease and systemic autoimmune disease (ILD-SAD) and to identify factors associated with infection and severity of COVID-19. Methods: We performed a cross-sectional multicenter study of patients with ILD-SAD followed between June and October 2021. The main variable was COVID-19 infection confirmed by a positive polymerase chain reaction (PCR) result for SARS-CoV-2. The secondary variables included severity of COVID-19, if the patient had to be admitted to hospital or died of the disease, and vaccination status. Other variables included clinical and treatment characteristics, pulmonary function and high-resolution computed tomography. Two logistic regression was performed to explore factors associated with “COVID-19” and “severe COVID-19”. Results: We included 176 patients with ILD-SAD: 105 (59.7%) had rheumatoid arthritis, 49 (27.8%) systemic sclerosis, and 22 (12.54%) inflammatory myopathies. We recorded 22/179 (12.5%) SARS-CoV-2 infections, 7/22 (31.8%) of them were severe and 3/22 (13.22%) died. As to the vaccination, 163/176 (92.6%) patients received the complete doses. The factors associated with SARS-CoV-2 infection were FVC (OR (95% CI), 0.971 (0.946–0.989); p = 0.040), vaccination (OR (95% CI), 0.169 (0.030–0.570); p = 0.004), and rituximab (OR (95% CI), 3.490 (1.129–6.100); p = 0.029). The factors associated with severe COVID-19 were the protective effect of the vaccine (OR (95% CI), 0.024 (0.004–0.170); p < 0.001) and diabetes mellitus (OR (95% CI), 4.923 (1.508–19.097); p = 0.018). Conclusions: Around 13% of patients with ILD-SAD had SARS-CoV-2 infection, which was severe in approximately one-third. Most patients with severe infection were not fully vaccinated.
Objectives: To describe the characteristics and progression of interstitial lung disease in patients with associated systemic autoimmune disease (ILD-SAI) and to identify factors associated with progression and mortality. Patients and methods: We performed a multicenter, retrospective, observational study of patients with ILD-SAI followed between 2015 and 2020. We collected clinical data and performed pulmonary function testing and high-resolution computed tomography at diagnosis and at the final visit. The main outcome measure at the end of follow-up was forced vital capacity (FVC) >10% or diffusing capacity of the lungs for carbon monoxide >15% and radiological progression or death. Cox regression analysis was performed to identify factors associated with worsening of ILD. Results: We included 204 patients with ILD-SAI: 123 (60.3%) had rheumatoid arthritis (RA), 58 had (28.4%) systemic sclerosis, and 23 (11.3%) had inflammatory myopathy. After a median (IQR) period of 56 (29.8–93.3) months, lung disease had stabilized in 98 patients (48%), improved in 33 (16.1%), and worsened in 44 (21.5%). A total of 29 patients (14.2%) died. Progression and hospitalization were more frequent in patients with RA (p = 0.010). The multivariate analysis showed the independent predictors for worsening of ILD-SAI to be RA (HR, 1.9 [95% CI, 1.3–2.7]), usual interstitial pneumonia pattern (HR, 1.7 [95% CI, 1.0–2.9]), FVC (%) (HR, 2.3 [95% CI, 1.4–3.9]), and smoking (HR, 2.7 [95%CI, 1.6–4.7]). Conclusion: Disease stabilizes or improves after a median of 5 years in more than half of patients with ILD-SAI, although more than one-third die. Data on subgroups and risk factors could help us to predict poorer outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.